Advertisement

Principles of Regulated Activation Networks

  • Alexandre Miguel PintoEmail author
  • Leandro Barroso
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8577)

Abstract

In a context of growing awareness and prevalence of mental disorders, cognitive modeling has emerged as an important contribution to the study of the mind and its processes. Computational models have proved to be indispensable tools for precise and systematic simulations of cognitive processes, and have a potential application in the diagnosis and treatment of such pathologies.

We propose a connectionist cognitive model that incorporates regulatory mechanisms, called Regulated Activation Networks (RANs), that will be applied to the modeling of psychological phenomena. This paper summarizes the current early stages of the development of the RANs model. The objectives, principles and approach taken are described, as well as the architecture of the RANs model, some preliminary results and plans for future work.

Keywords

Cognitive model connectionism conceptual spaces psychological phenomena 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Anderson, J.R.: A spreading activation theory of memory. J. of Verbal Learning and Verbal Behavior 22(3), 261–295 (1983)CrossRefGoogle Scholar
  2. 2.
    Bengio, Y., Courville, A.C., Vincent, P.: Representation learning: A review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)CrossRefGoogle Scholar
  3. 3.
    Braver, T.S., Barch, D.M., Cohen, J.D.: Cognition and control in schizophrenia: A computational model of dopamine and prefrontal function. Bio. Psychiatry 46, 312–328 (1999)CrossRefGoogle Scholar
  4. 4.
    Collins, A.M., Quillian, M.R.: Retrieval time from semantic memory. J. of Verbal Learning and Verbal Behavior 8(2), 240–247 (1969)CrossRefGoogle Scholar
  5. 5.
    Crestani, F.: Application of spreading activation techniques in information retrieval. Artificial Intelligence Review 11, 453–482 (1997)CrossRefGoogle Scholar
  6. 6.
    Erickson, R.P., Ohrwall, H., von Skramlik, E., Henning, H.: Ohrwall, Henning and von Skramlik; the foundations of the four primary positions in taste. Neurosci. Biobehav. Rev. 8(1), 105–127 (1984)CrossRefGoogle Scholar
  7. 7.
    Rankin, C.H., et al.: Habituation revisited: an updated and revised description of the behavioral characteristics of habituation. Neurobiol. Learn. Mem. 92(2), 135–138 (2009)CrossRefGoogle Scholar
  8. 8.
    Wittchen, H.U., et al.: The size and burden of mental disorders and other disorders of the brain in Europe 2010. European Neuropsychopharmacology 21(9), 655–679 (2011)CrossRefGoogle Scholar
  9. 9.
    Gärdenfors, P.: Symbolic, conceptual and subconceptual representations. In: Human and Machine Perception: Information Fusion, pp. 255–270 (1997)Google Scholar
  10. 10.
    Gärdenfors, P.: Conceptual spaces as a framework for knowledge representation. Mind and Matter 2, 9–27 (2004)Google Scholar
  11. 11.
    Jacoby, L.L.: Perceptual enhancement: persistent effects of an experience. J. Exp. Psychol. Learn. Mem. Cogn. 9(1), 21–38 (1983)CrossRefGoogle Scholar
  12. 12.
    Kyaga, S., Landén, M., Boman, M., Hultman, C.M., Långström, N., Lichtenstein, P.: Mental illness, suicide and creativity: 40-year prospective total population study. J. of Psychiatric Research 47(1), 83–90 (2013)CrossRefGoogle Scholar
  13. 13.
    Matsukawa, J., Snodgrass, J.G., Doniger, G.M.: Conceptual versus perceptual priming in incomplete picture identification. J. Psycholinguist. Res. 34(6), 515–540 (2005)CrossRefGoogle Scholar
  14. 14.
    McNamara, T.P., Altarriba, J.: Depth of spreading activation revisited: Semantic mediated priming occurs in lexical decisions. J. of Memory and Language 27(5), 545–559 (1988)CrossRefGoogle Scholar
  15. 15.
    O’Reilly, R.C.: Biologically based computational models of high-level cognition. Science 314(5796), 91–94 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    World Health Organization. Global burden of mental disorders and the need for a comprehensive, coordinated response from health and social sectors at the country level (December 2011)Google Scholar
  17. 17.
    Rankin, C.H., Broster, B.S.: Factors affecting habituation and recovery from habituation in the nematode Caenorhabditis elegans. Behav. Neurosci. 106(2), 239–249 (1992)CrossRefGoogle Scholar
  18. 18.
    Roediger, H.L., Balota, D.A., Watson, J.M.: Spreading activation and arousal of false memories. In: The Nature of Remembering: Essays in Honor of Robert G. Crowder, pp. 95–115 (2001)Google Scholar
  19. 19.
    Roediger, H.L., Blaxton, T.A.: Effects of varying modality, surface features, and retention interval on priming in word-fragment completion. Mem. & Cognition 15(5), 379–388 (1987)CrossRefGoogle Scholar
  20. 20.
    Roediger, H.L., Mcdermott, K.B.: Creating false memories: Remembering words not presented in lists. Journal of Experimental Psychology: Learning, Memory, and Cognition 21(4), 803–814 (1995)Google Scholar
  21. 21.
    Rolls, E., Loh, M., Deco, G., Winterer, G.: Computational models of schizophrenia and dopamine modulation in the prefrontal cortex. Nat. Rev. Neurosci. 9(9), 696–709 (2008)CrossRefGoogle Scholar
  22. 22.
    Seamon, J.G., Luo, C.R., Gallo, D.A.: Creating false memories of words with or without recognition of list items: Evidence for nonconscious processes. Psychological Science 9(1), 20–26 (1998)CrossRefGoogle Scholar
  23. 23.
    Wei, G., Yu, Z.: Storage capacity of letter recognition in hopfield networksGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.CISUC - University of CoimbraCoimbraPortugal

Personalised recommendations