Skip to main content

Numerical Analysis for a Class of Non Clamped Contact Problems

  • Conference paper
  • First Online:
Advances in Global Optimization

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 95))

Abstract

We study a class of dynamic thermal sub-differential contact problems with friction, for long memory viscoelastic materials, without the clamped condition, which can be put into a general model of system defined by a second order evolution inequality, coupled with a first order evolution equation. After statement of an existence and uniqueness result, we present a fully discrete scheme for numerical approximations and analysis of error order estimate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ciarlet, P.G.: Mathematical Elasticity. Three-Dimensional Elasticity, vol. 1. North-Holland, Amsterdam (1988)

    Google Scholar 

  2. Duvaut, G., Lions, J.L.: Les Inéquations en Mécanique et en Physique. Dunod, Paris (1972)

    MATH  Google Scholar 

  3. Kikuchi, N., Oden, J.T.: Contact Problems in Elasticity. SIAM, Philadelphia (1988)

    Book  MATH  Google Scholar 

  4. Martins, J.A.C., Oden, J.T.: Existence and uniqueness results for dynamic contact problems with nonlinear normal and friction interface laws. Nonlinear Anal. 11, 407–428 (1987)

    Article  MathSciNet  Google Scholar 

  5. Panagiotopoulos, P.D.: Inequality Problems in Mechanics and Applications. Birkhäuser, Basel (1985)

    Book  MATH  Google Scholar 

  6. Figueiredo, I., Trabucho, L.: A class of contact and friction dynamic problems in thermoelasticity and in thermoviscoelasticity. Int. J. Eng. Sci. 33, 45–66 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  7. Awbi, B., Chau, O.: Quasistatic thermovisoelastic frictional contact problem with damped response. Appl. Anal. 83(6), 635–648 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Denkowski, Z., Migórski, S.: A system of evolution hemivariational inequalities modeling thermoviscoelastic frictional contact. J. Nonlinear Anal. 60, 1415–1441 (2005)

    Article  MATH  Google Scholar 

  9. Sofonea, M., Matei, A.: Variational Inequalities with Applications: A Study of Antiplane Frictional Contact Problems. Advances in Mechanics and Mathematics, vol. 18. Springer, New York (2009)

    Google Scholar 

  10. Adly, S., Chau, O.: On some dynamical thermal non clamped contact problems. Math. Program. Ser. B (2013). doi:10.1007/s1010701306579

    Google Scholar 

  11. Han, W., Sofonea, M.: Quasistatic Contact Problems in Viscoelasticity and Viscoplasticity. American Mathematical Society and International Press, Providence (2002)

    MATH  Google Scholar 

  12. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oanh Chau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Chau, O. (2015). Numerical Analysis for a Class of Non Clamped Contact Problems. In: Gao, D., Ruan, N., Xing, W. (eds) Advances in Global Optimization. Springer Proceedings in Mathematics & Statistics, vol 95. Springer, Cham. https://doi.org/10.1007/978-3-319-08377-3_32

Download citation

Publish with us

Policies and ethics