Skip to main content

Privacy-Preserving Wildcards Pattern Matching Using Symmetric Somewhat Homomorphic Encryption

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8544))

Abstract

The basic pattern matching problem is to find the locations where a pattern occurs in a text. We give several computations enabling a client to obtain matching results from a database so that the database can not learn any information about client’s queried pattern. For such computations, we apply the symmetric-key variant scheme of somewhat homomorphic encryption proposed by Brakerski and Vaikuntanathan (CRYPTO 2011), which can support a limited number of both polynomial additions and multiplications on encrypted data. We also utilize the packing method introduced by Yasuda et al. (CCSW 2013) for efficiency. While they deal with only basic problems for binary vectors, we address more complex problems such as the approximate and wildcards pattern matching for non-binary vectors. To demonstrate the efficiency of our method, we implemented the encryption scheme for secure wildcards pattern matching of DNA sequences. Our implementation shows that a client can privately search real-world genomes of length 16,500 in under one second on a general-purpose PC.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Atallah, M.J., Frikken, K.B.: Securely outsourcing linear algebra computations. In: ACM Symposium on Information, Computer and Communication Security, ASIACCS 2010, pp. 48–59. ACM Press, New York (2010)

    Google Scholar 

  2. Baldi, P., Baronio, R., De Crisofaro, E., Gasti, P., Tsudik, G.: Countering gattaca: efficient and secure testing of fully-sequenced human genomes. In: ACM Conference on Computer and Communications Security, CCS 2011, pp. 691–702. ACM (2011)

    Google Scholar 

  3. Baron, J., El Defrawy, K., Minkovich, K., Ostrovsky, R., Tressler, E.: 5PM: secure pattern matching. In: Visconti, I., De Prisco, R. (eds.) SCN 2012. LNCS, vol. 7485, pp. 222–240. Springer, Heidelberg (2012), http://eprint.iacr.org/2012/698.pdf

    Chapter  Google Scholar 

  4. Beck, M., Kerschbaum, F.: Approximate two-party privacy-preserving string matching with linear complexity. In: IEEE International Congress on Big Data, pp. 31–37. IEEE (2013)

    Google Scholar 

  5. Blanton, M., Gasti, P.: Secure and efficient protocols for iris and fingerprint identification. In: Atluri, V., Diaz, C. (eds.) ESORICS 2011. LNCS, vol. 6879, pp. 190–209. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  6. Boneh, D., Gentry, C., Halevi, S., Wang, F., Wu, D.J.: Private database queries using somewhat homomorphic encryption. In: Jacobson, M., Locasto, M., Mohassel, P., Safavi-Naini, R. (eds.) ACNS 2013. LNCS, vol. 7954, pp. 102–118. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  7. Brakerski, Z., Vaikuntanathan, V.: Fully homomorphic encryption from ring-LWE and security for key dependent messages. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 505–524. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  8. Chen, Y., Nguyen, P.Q.: BKZ 2.0: better lattice security estimates. In: Lee, D.H., Wang, X. (eds.) ASIACRYPT 2011. LNCS, vol. 7073, pp. 1–20. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  9. El Defrawy, K., Faber, S.: Blindfolded searching of data via secure pattern matching. IEEE Computer Magazine’s Special Issue (2013) (to appear)

    Google Scholar 

  10. Frikken, K.B.: Practical private DNA string searching and matching through efficient oblivious automata evaluation. In: Gudes, E., Vaidya, J. (eds.) Data and Applications Security XXIII. LNCS, vol. 5645, pp. 81–94. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  11. Gama, N., Nguyen, P.Q.: Predicting lattice reduction. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 31–51. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  12. Gennaro, R., Hazay, C., Sorensen, J.S.: Text search protocols with simulation based security. In: Nguyen, P.Q., Pointcheval, D. (eds.) PKC 2010. LNCS, vol. 6056, pp. 332–350. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  13. Gentry, C., Halevi, S., Smart, N.P.: Homomorphic evaluation of the AES circuit. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 850–867. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  14. Hazay, C., Lindell, Y.: Efficient protocols for set intersection and pattern matching with security against malicious and convert adversaries. In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 155–175. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Hazay, C., Toft, T.: Computationally secure pattern matching in the presence of malicious adversaries. In: Abe, M. (ed.) ASIACRYPT 2010. LNCS, vol. 6477, pp. 195–212. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  16. Ingman, M., Gyllensten, U.: mtDB: Human Mitochondrial Genome Database, a resource for population genetics and medical sciences. Nucleic Acids Research 34, 749–751 (2006)

    Article  Google Scholar 

  17. Katz, J., Malka, L.: Secure text processing with applications to private DNA matching. In: ACM Conference on Computer and Communication Security, CCS 2010, pp. 485–492. ACM (2010)

    Google Scholar 

  18. Kerschbaum, F., Oertel, N.: Privacy-preserving pattern matching for anomaly detection in RFID anti-counterfeiting. In: Ors Yalcin, S.B. (ed.) RFIDSec 2010. LNCS, vol. 6370, pp. 124–137. Springer, Heidelberg (2010)

    Google Scholar 

  19. Lauter, K., Naehrig, M., Vaikuntanathan, V.: Can homomorphic encryption be practical? In: ACM Workshop on Cloud Computing Security Workshop, CCSW 2011, pp. 113–124. ACM (2011)

    Google Scholar 

  20. Lindner, R., Peikert, C.: Better key sizes (and attacks) for LWE-based encryption. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 319–339. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  21. Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  22. Lyubashevsky, V., Peikert, C., Regev, O.: A toolkit for ring-LWE cryptography. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 35–54. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  23. Micciancio, D., Regev, O.: Worst-case to average-case reduction based on gaussian measures. SIAM J. Computing 37(1), 267–302 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Mohassel, P., Niksefat, S., Sadeghian, S., Sadeghiyan, B.: An efficient protocol for oblivious DFA evaluation and applications. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 398–415. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  25. Naccache, D., Stern, J.: A new cryptosystem based on higher residues. In: ACM Conference on Computer and Communication Security, CCS 1998, pp. 59–66 (1998)

    Google Scholar 

  26. Osadchy, M., Pinkas, B., Jarrous, A., Moskovich, B.: SCiFI - a system for secure face recognition. In: IEEE Security and Privacy, pp. 239–254. IEEE (2010)

    Google Scholar 

  27. Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  28. Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphism. Foundations of Secure Computation, 169–177 (1978)

    Google Scholar 

  29. Troncoso-Pastoriza, J.R., Katzenbeisser, S., Celik, M.: Privacy preserving error resilient DNA searching through oblivious automata. In: ACM Conference on Computer and Communications Security, CCS 2007, pp. 519–528. ACM (2007)

    Google Scholar 

  30. Vergnaud, D.: Efficient and secure generalized pattern matching via fast fourier transform. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 41–58. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  31. Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T.: Secure pattern matching using somewhat homomorphic encryption. In: ACM Workshop on Cloud Computing Security Workshop, CCSW 2013, pp. 65–76. ACM (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Yasuda, M., Shimoyama, T., Kogure, J., Yokoyama, K., Koshiba, T. (2014). Privacy-Preserving Wildcards Pattern Matching Using Symmetric Somewhat Homomorphic Encryption. In: Susilo, W., Mu, Y. (eds) Information Security and Privacy. ACISP 2014. Lecture Notes in Computer Science, vol 8544. Springer, Cham. https://doi.org/10.1007/978-3-319-08344-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08344-5_22

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08343-8

  • Online ISBN: 978-3-319-08344-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics