Cognition-Enabled Robot Control for Mixed Human-Robot Rescue Teams

  • Fereshta Yazdani
  • Benjamin Brieber
  • Michael Beetz
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 302)

Abstract

In this paper we present a cognition-enabled control framework for robot control in mixed human-robot teams performing rescue missions after avalanches. We could focus on two key reasoning mechanisms: First, reasoning about the robot capabilities, which allow them to make best use of the hardware and software components they are equipped with. Second, context-directed interpretation of vague commands, which enables the human leader of the rescue team to state tasks naturally. Simulation-based reasoning mechanisms then refine the vague and ambiguous instructions in the given capability context to appropriate task interpretations. We could show that by employing these reasoning mechanisms we can specify generic plans that automatically adapt themselves to the robotic agent executing them.

Notes

Acknowledgments

This work is supported in part by the EU FP7 project SHERPA (grant number #600958).

References

  1. 1.
    G.-J. Kruijff, M. Janicek, S. Keshavdas, B. Larochelle, H. Zender, N. Smets, T. Mioch, M. Neerincx, J. van Diggelen, F. Colas, M. Liu, F. Pomerleau, R. Siegwart, V. Hlavac, T. Svoboda, T. Petrıcek, M. Reinstein, K. Zimmermann, F. Pirri, M. Gianni, P. Papadakis, A. Sinha, P. Balmer, N. Tomatis, R. Worst, T. Linder, H. Surmann, V. Tretyakov, S. Corrao, S. Pratzler-Wanczura, and M. Sulk, “Experience in system design for human-robot teaming in urban search & rescue,” in Proceedings of 8th International Conference on Field and Service Robotics. International Conference on Field and Service Robotics (FSR-2012), July 16–19, Japan. Spring Verlag, 2012.Google Scholar
  2. 2.
    S. Tadokoro, H. Kitano, T. Takahashi, I. Noda, H. Matsubara, A. Shinjoh, T. Koto, I. Takeuchi, H. Takahashi, F. Matsuno, M. Hatayama, J. Nobe, and S. Shimada, “The robocup-rescue project: A robotic approach to the disaster mitigation problem.” in ICRA. IEEE, 2000, pp. 4089–4094.Google Scholar
  3. 3.
    L. Marconi, C. Melchiorri, M. Beetz, D. Pangercic, R. Siegwart, S. Leutenegger, R. Carloni, S. Stramigioli, H. Bruyninckx, P. Doherty, A. Kleiner, V. Lippiello, A. Finzi, B. Siciliano, A. Sala, and N. Tomatis, “The sherpa project: smart collaboration between humans and ground-aerial robots for improving rescuing activities in alpine environments,” in IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), College Station, Texas, USA, Nov. 5–8 2012.Google Scholar
  4. 4.
    D. Ferrucci and A. Lally, “UIMA: An Architectural Approach to Unstructured Information Processing in the Corporate Research Environment,” Natural Language Engineering, vol. 10, no. 3–4, pp. 327–348, 2004.Google Scholar
  5. 5.
    M. Quigley, K. Conley, and B. Gerkey, “ROS: an open-source Robot Operating System,” in IEEE International Conference on Robotics and Automation (ICRA), vol. 32, Kobe, Japan, 2009, pp. 151–170.Google Scholar
  6. 6.
    P. Doherty, G. Granlund, K. Kuchcinski, E. Sandewall, K. Nordberg, E. Skarman, and J. Wiklund, “The WITAS unmanned aerial vehicle project,” in ECAI 2000. Proceedings of the 14th European Conference on Artificial Intelligence, W. Horn, Ed., Berlin, August 2000, pp. 747–755.Google Scholar
  7. 7.
    M. Beetz, D. Jain, L. Mösenlechner, M. Tenorth, L. Kunze, N. Blodow, and D. Pangercic, “Cognition-enabled autonomous robot control for the realization of home chore task intelligence,” Proceedings of the IEEE, vol. 100, no. 8, pp. 2454–2471, 2012.Google Scholar
  8. 8.
    M. Beetz, L. Mösenlechner, and M. Tenorth, “CRAM - A Cognitive Robot Abstract Machine for Everyday Manipulation in Human Environments,” in IEEE/RSJ International Conference on Intelligent Robots and Systems, Taipei, Taiwan, October 18–22 2010, pp. 1012–1017.Google Scholar
  9. 9.
    L. Mösenlechner and M. Beetz, “Parameterizing Actions to have the Appropriate Effects,” in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), San Francisco, CA, USA, September 25–30 2011.Google Scholar
  10. 10.
    M. Beetz, L. Mösenlechner, M. Tenorth, and T. Rühr, “Cram - a cognitive robot abstract machine,” in 5th International Conference on Cognitive Systems (CogSys 2012), 2012.Google Scholar
  11. 11.
    L. Kunze, T. Roehm, and M. Beetz, “Towards semantic robot description languages,” in IEEE International Conference on Robotics and Automation (ICRA), Shanghai, China, May, 9–13 2011, pp. 5589–5595.Google Scholar
  12. 12.
    M. Tenorth and M. Beetz, “KnowRob - A Knowledge Processing Infrastructure for Cognition-enabled Robots. Part 1: The KnowRob System,” International Journal of Robotics Research (IJRR), 2013, accepted for publication.Google Scholar
  13. 13.
    M. Beetz, “Plan-based control of robotic agents,” Ph.D. dissertation, University of Bonn, 2000, habilitationsschrift, eingereicht im Oktober 2000.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Fereshta Yazdani
    • 1
  • Benjamin Brieber
    • 1
  • Michael Beetz
    • 1
  1. 1.Institute for Artificial Intelligence Universität BremenBremenGermany

Personalised recommendations