Diagnosis Makes the Difference for a Successful Execution of High-Level Robot Control Programs

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 302)

Abstract

Faults in action execution and perception that occur at runtime negatively affects the probability that an agent is able to finish a task successfully. There are several techniques such as hand-coded error recovery or diagnosis and repair approaches to deal with this problem. In this paper we present an experimental comparison of the fault tolerance of the popular (CRAM) framework using hand-coded error recovery and an approach using model-based diagnosis. The approaches were evaluated using a simulated robot delivery domain. Experimental results confirm that a control approach using diagnosis is able to significantly increase the success-rate and outperforms hand-coded error strategies.

References

  1. 1.
    Lussier, B., Lampe, A., Chatila, R., Guiochet, J., Ingrand, F., Killijian, M.O., Powell, D.: Fault Tolerance in Autonomous Systems: How and How Much? In: Proceedings of the 4th IARP/IEEE-RAS/EURON Joint Workshop on Technical Challenge for Dependable Robots in Human Environments, Nagoya, Japan. (2005)Google Scholar
  2. 2.
    Gspandl, S., Pill, I., Reip, M., Steinbauer, G., Ferrein, A.: Belief Management for High-Level Robot Programs. In: The 22\(^{nd}\) International Joint Conference on Artificial Intelligence (IJCAI), Barcelona, Spain (2011) 900–905.Google Scholar
  3. 3.
    Beetz, M., Mösenlechner, L., Tenorth, M.: CRAM - A Cognitive Robot Abstract Machine for everyday manipulation in human environments. In: Intelligent Robots and Systems (IROS), 2010 IEEE/RSJ International Conference on, IEEE (2010) 1012–1017Google Scholar
  4. 4.
    Beetz, M., Jain, D., Mösenlechner, L., Tenorth, M.: Towards Performing Everyday Manipulation Activities. Robotics and Autonomous Systems 58(9) (2010) 1085–1095Google Scholar
  5. 5.
    Tenorth, M., Beetz, M.: KnowRob - Knowledge Processing for Autonomous Personal Robots. In: IEEE International Conference on Intelligent Robots and Systems. (2009)Google Scholar
  6. 6.
    Waibel, M., Beetz, M., Civera, J., D’Andrea, R., Elfring, J., Galvez-Lopez, D., Haussermann, K., Janssen, R., Montiel, J., Perzylo, A., Schiessle, B., Tenorth, M., Zweigle, O., van de Molengraft, R.: RoboEarth – A World Wide Web for Robots. Robotics Automation Magazine, IEEE 18(2) (2011) 69–82Google Scholar
  7. 7.
    Alami, R., Chatila, R., Fleury, S., Ghallab, M., Ingrand, F.: An architecture for autonomy. The International Journal of Robotics Research 17(4) (1998) 315–337Google Scholar
  8. 8.
    Degroote, A., Lacroix, S.: ROAR: Resource oriented agent architecture for the autonomy of robots. In: IEEE International Conference on Robotics and Automation (ICRA). (2011) 6090–6095Google Scholar
  9. 9.
    Muscettola, N., Nayak, P.P., Pell, B., Williams, B.C.: Remote Agent: to boldly go where no AI system has gone before. Artificial Intelligence 103(1–2) (1998) 5–47Google Scholar
  10. 10.
    Nilsson, N.J.: Teleo-reactive programs for agent control. Journal of Artificial Intelligence Research 1(1) (1994) 139–158Google Scholar
  11. 11.
    Hayes, I.J.: Towards reasoning about teleo-reactive programs for robust real-time systems. In: Proceedings of the 2008 RISE/EFTS Joint International Workshop on Software Engineering for Resilient Systems, ACM (2008) 87–94Google Scholar
  12. 12.
    Reiter, R.: A theory of diagnosis from first principles. Artificial Intelligence 32(1) (1987) 57–95Google Scholar
  13. 13.
    McIlraith, S.: Explanatory diagnosis: Conjecturing actions to explain observations. In: Proc. KR-98. (1998) 167–179Google Scholar
  14. 14.
    Sohrabi, S., Baier, J.A., McIlraith, S.A.: Preferred explanations: Theory and generation via planning. In: Conference on Artificial Intelligence (AAAI-11). (2011) 261–267Google Scholar
  15. 15.
    Fichtner, M., Großmann, A., Thielscher, M.: Intelligent execution monitoring in dynamic environments. Fundam. Inform. 57(2–4) (2003) 371–392Google Scholar
  16. 16.
    Weld, D.S., Anderson, C.R., Smith, D.E.: Extending graphplan to handle uncertainty and sensing actions. In: Conference on Artificial Intelligence (AAAI-98). (1998) 897–904Google Scholar
  17. 17.
    de Kleer, J.: Getting the probabilities right for measurement selection. In: International Workshop on Principles of Diagnosis (DX). (2006) 141–146Google Scholar
  18. 18.
    Kuhn, L., Price, B., de Kleer, J., Do, M., Zhou, R.: Pervasive diagnosis: the integration of active diagnosis into production plans. In: International Workshop on Principles of Diagnosis (DX). (2008)Google Scholar
  19. 19.
    Roos, N., Witteveen, C.: Diagnosis of plans and agents. In: Multi-Agent Systems and Applications IV. Springer (2005) 357–366Google Scholar
  20. 20.
    De Jonge, F., Roos, N., Witteveen, C.: Diagnosis of multi-agent plan execution. In: Multiagent System Technologies. Springer (2006) 86–97Google Scholar
  21. 21.
    de Pobil, A.P.: Why do We Need Benchmarks in Robotics Research? In: IROS Workshop on Benchmarks in Robotics Research, Beijing, China (2006)Google Scholar
  22. 22.
    Hernández-Orallo, J., Dowe, D.L.: Measuring universal intelligence: Towards an anytime intelligence test. Artificial Intelligence 174(18) (December 2010) 1508–1539Google Scholar
  23. 23.
    Steinbauer, G., Winter, L.C., Nussbaumer, A., Albert, D.: Autonomous Robots: Towards A Founded Assessment of Robustness. In: ICRA Workshop on Software Development and Integration in Robotics (SDIR-VIII), Karlsruhe, Germany (2013)Google Scholar
  24. 24.
    McCarthy, J.: Situations, Actions and Causal Laws. Technical report, Stanford University (1963)Google Scholar
  25. 25.
    Reiter, R.: Knowledge in Action. Logical Foundations for Specifying and Implementing Dynamical Systems. MIT Press (2001)Google Scholar
  26. 26.
    Iwan, G.: History-based diagnosis templates in the framework of the situation calculus. AI Communications 15(1) (2002) 31–45Google Scholar
  27. 27.
    Giacomo, G.D., Lespérance, Y., Levesque, H.J., Sardina, S.: IndiGolog: A High-Level Programming Language for Embedded Reasoning Agents. In: Multi-Agent Programming: Languages, Tools and Applications. Springer (2009) 31–72Google Scholar
  28. 28.
    Reip, M., Steinbauer, G., Ferrein, A.: Improving Belief Management for High-Level Robot Programs by Using Diagnosis Templates. In: International Workshop on Principles of Diagnosis (DX), Great Malvern, UK (2012)Google Scholar
  29. 29.
    Mösenlechner, L., Beetz, M.: Using physics- and sensor-based simulation for high-fidelity temporal projection of realistic robot behavior. In: 19th International Conference on Automated Planning and Scheduling. (2009)Google Scholar
  30. 30.
    Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: an open-source Robot Operating System. In: ICRA Workshop on Open Source Software. (2009)Google Scholar
  31. 31.
    Gspandl, S., Podesser, S., Reip, M., Steinbauer, G., Wolfram, M.: A Dependable Perception-Decision-Execution Cycle for Autonomous Robots. In: 2012 IEEE International Conference on Robotics and Automation (ICRA), St. Paul, MN, USA (2012)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Institute for Software TechnologyGraz University of TechnologyGrazAustria

Personalised recommendations