Clustering of Humanoid Robot Motions Executed in Response to Touch

  • Fransiska Basoeki
  • Fabio Dalla Libera
  • Emanuele Menegatti
  • Enrico Pagello
  • Hiroshi Ishiguro
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 302)


We perform a study on responses that should be performed by robots when touched by humans. To study the kinds of robot responses in general, there is a need for clustering similar responses. We present the use of Multiple correspondence analysis (MCA) and hierarchical clustering method as a way of clustering different humanoid robot postures. MCA is commonly used to analyze data with discrete variables. Since clustering solely by MCA was impractical for our application, hierarchical clustering method was performed to aid the direct inspection of the robot response clusters.


  1. 1.
    Argall, B.D., Billard, A.G.: A survey of tactile human-robot interactions. Robotics and Autonomous Systems 58(10) (2010) 1159–1176Google Scholar
  2. 2.
    Grunwald, G., Schreiber, G., Albu-Schffer, A., Hirzinger, G.: Touch: The direct type of human interaction with a redundand service robot. In: of the 10th IEEE Workshop on Robot and Human Interactive Communication (ROMAN 2001), Bordeaux/Paris, France (2001) 347–352Google Scholar
  3. 3.
    Hertenstein, M.J.: Touch: Its communicative functions in infancy. Human Development 45 (2002) 70–94Google Scholar
  4. 4.
    Yohanan, S., MacLean, K.: The role of affective touch in human-robot interaction: Human intent and expectations in touching the haptic creature. International Journal of Social Robotics 4(2) (2012) 163–180Google Scholar
  5. 5.
    Kanda, T., Ishiguro, H., Ono, T., Imai, M., Nakatsu, R.: Development and evaluation of an interactive humanoid robot “robovie”. In: 2002 IEEE on Robotics and Automation (ICRA 2002). Volume 2, Washington, DC, USA (2002) 1848–1855Google Scholar
  6. 6.
    Dahl, T.S., Palmer, A.: Touch-triggered protective reflexes for safer robots. In: Proceedings of the International Symposium on New Frontiers in Human-Robot Interaction. (2010) 27–33Google Scholar
  7. 7.
    Vinay, V., Cox, I., Milic-Frayling, N., Wood, K.: Measuring the complexity of a collection of documents. In: Advances in Information Retrieval. Volume 3936 of Lecture Notes in Computer Science. Springer, Berlin Heidelberg (2006) 107–118Google Scholar
  8. 8.
    Greenacre, M.: Correspondence analysis in practice. Volume 20. CRC Press (2010)Google Scholar
  9. 9.
    Bouilland, S., Loslever, P.: Multiple correspondence analysis of biomechanical signals characterized through fuzzy histograms. Journal of Biomechanics 31(7) (1998) 663–666Google Scholar
  10. 10.
    Loslever, P., Laassel, E., Angue, J.: Combined statistical study of joint angles and ground reaction forces using component and multiple correspondence analysis. Biomedical Engineering, IEEE Transactions on 41(12) (Dec 1994) 1160–1167Google Scholar
  11. 11.
    Husson, F., Lê, S., Pagès, J.: Exploratory Multivariate Analysis by Example Using R. A Chapman & Hall book. CRC Press (2011)Google Scholar
  12. 12.
    Kaufman, L., Rousseeuw, P.J.: Finding groups in data: an introduction to cluster analysis. John Wiley and Sons, New York (1990)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Fransiska Basoeki
    • 1
  • Fabio Dalla Libera
    • 1
    • 2
  • Emanuele Menegatti
    • 3
  • Enrico Pagello
    • 3
  • Hiroshi Ishiguro
    • 1
  1. 1.Department of Systems InnovationGraduate School of Engineering Science, Osaka UniversityOsakaJapan
  2. 2.JSPS Postdoctoral Research FellowOsakaJapan
  3. 3.Department of Information EngineeringUniversity of PadovaPadovaItaly

Personalised recommendations