3D Pose Detection for Articulated Vehicles

  • Christian Fuchs
  • Dieter Zöbel
  • Dietrich Paulus
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 302)


The knowledge about relative poses within a tractor/trailer combination is a vital prerequisite for kinematic modeling and trajectory estimation. In case of autonomous vehicles or driver-assistance systems, for example, the monitoring of an attached passive trailer is crucial for operational safety. A 3-D pose detection sensor based on an optical approach suitable for uneven ground is presented and evaluated against a 2-D method in this article using a virtual test environment.


Articulated vehicles Tractor and trailer state 3D pose 


  1. 1.
    Claudio Altafini. Some properties of the general n-trailer. International Journal of Control, 74(4):409–424, 2001.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Claudio Altafini. Following a path of varying curvature as an output regulation problem. IEEE Transactions on Automatic Control, 47(9), 2002.Google Scholar
  3. 3.
    Claudio Altafini, Alberto Speranzon, and Karl Henrik Johansson. Hybrid control of a truck and trailer vehicle. In Hybrid Systems: Computation and Control, pages 21–34. Springer, 2002.Google Scholar
  4. 4.
    Claudio Altafini, Alberto Speranzon, and Bo Wahlberg. A feedback control scheme for reversing a truck and trailer vehicle. IEEE Transactions on Robotics and Automation, 17(6):915–922, 2001.CrossRefGoogle Scholar
  5. 5.
    Elisabeth Balcerak, Dieter Zöbel, and Thorsten Weidenfeller. Patent DE 10 2006 056 408 A1. Deutsches Patent- und Markenamt, 11 2006.Google Scholar
  6. 6.
    Woojin Chung, Myoungkuk Park, Kwanghyun Yoo, Jae Il Roh, and Jongsuk Choi. Backward-motion control of a mobile robot with n passive off-hooked trailers. Journal of Mechanical Science and Technology, 25(11):2895–2905, 2011.CrossRefGoogle Scholar
  7. 7.
    Adam W Divelbiss and John T Wen. A path space approach to nonholonomic motion planning in the presence of obstacles. IEEE Transactions on Robotics and Automation, 13(3):443–451, 1997.CrossRefGoogle Scholar
  8. 8.
    Simon Eggert, Christian Fuchs, Frank Bohdahnowicz, and Dieter Zöbel. Reaktive optische Einknickwinkelvermessung bei Gliederfahrzeugen. Echtzeit 2013: Funktionale Sicherheit, 2013.Google Scholar
  9. 9.
    Christian Fuchs, Simon Eggert, Benjamin Knopp, and Dieter Zöbel. Pose detection in truck and trailer combinations for advanced driver assistance systems. In 2014 IEEE Intelligent Vehicles Symposium. IEEE, 2014.Google Scholar
  10. 10.
    Christian Fuchs, Simon Eggert, and Dieter Zöbel. Optical measurement of the angle between truck and trailer. In Karsten Berns, Syed Atif Mehdi, and Abubakr Muhammad, editors, Field and Assistive Robotics: Advances in Systems and Algorithms, pages 44–53. Shaker Verlag, 5 2014.Google Scholar
  11. 11.
    Mark Fiala. Artag, a fiducial marker system using digital techniques. In Computer Vision and Pattern Recognition, 2005. CVPR 2005. IEEE Computer Society Conference on, volume 2, pages 590–596. IEEE, 2005.Google Scholar
  12. 12.
    Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision. Cambridge University Press, 2003.Google Scholar
  13. 13.
    Hirokazu Kato and Mark Billinghurst. Marker tracking and hmd calibration for a video-based augmented reality conferencing system. In Augmented Reality, 1999. (IWAR’99) Proceedings. 2nd IEEE and ACM International Workshop on, pages 85–94. IEEE, 1999.Google Scholar
  14. 14.
    S-G Kong and Bart Kosko. Adaptive fuzzy systems for backing up a truck-and-trailer. Neural Networks, IEEE Transactions on, 3(2):211–223, 1992.CrossRefGoogle Scholar
  15. 15.
    Jean-Paul Laumond. Nonholonomic motion planning versus controllability via the multibody car system example. Technical report, 1990.Google Scholar
  16. 16.
    Jae-Hyoung Lee, Woojin Chung, Munsang Kim, and Jae-Bok Song. A passive multiple trailer system with off-axle hitching. International Journal of Control Automation and Systems, 2:289–297, 2004.Google Scholar
  17. 17.
    Kenneth Levenberg. A method for the solution of certain problems in least squares. Quarterly of applied mathematics, 2:164–168, 1944.MathSciNetMATHGoogle Scholar
  18. 18.
    Reimar K Lenz and Roger Y Tsai. Techniques for calibration of the scale factor and image center for high accuracy 3-d machine vision metrology. IEEE Transactions on Pattern Analysis and Machine Intelligence, 10(5), 1988.Google Scholar
  19. 19.
    Donald W Marquardt. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society for Industrial & Applied Mathematics, 11(2):431–441, 1963.CrossRefGoogle Scholar
  20. 20.
    Maciej Michałek. Tracking control strategy for the standard n-trailer mobile robot-a geometrically motivated approach. In Robot Motion and Control 2011, pages 39–51. Springer, 2012. CrossRefGoogle Scholar
  21. 21.
    Yoshihiko Nakamura, Hideaki Ezaki, Yuegang Tan, and Woojin Chung. Design of steering mechanism and control of nonholonomic trailer systems. In IEEE International Conference on Robotics and Automation, 2000. Proceedings. ICRA’00., volume 1, pages 247–254. IEEE, 2000.Google Scholar
  22. 22.
    R Orosco-Guerrero, E Aranda-Bricaire, and M Velasco-Villa. Global path-tracking for a multi-steered general n-trailer. In World Congress, volume 15, pages 239–239, 2002.Google Scholar
  23. 23.
    Edwin Olson. AprilTag: A robust and flexible visual fiducial system. In Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), pages 3400–3407. IEEE, May 2011.Google Scholar
  24. 24.
    Davide Scaramuzza. Omnidirectional vision: from calibration to robot motion estimation. PhD thesis, Citeseer, 2007.Google Scholar
  25. 25.
    Dieter Schmalstieg, Anton Fuhrmann, Gerd Hesina, Zsolt Szalavári, L Miguel Encarnaçao, Michael Gervautz, and Werner Purgathofer. The studierstube augmented reality project. Presence: Teleoperators and Virtual Environments, 11(1):33–54, 2002.CrossRefGoogle Scholar
  26. 26.
    Roger Tsai. A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf tv cameras and lenses. IEEE Journal of Robotics and Automation, 3(4):323–344, 1987.CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Christian Fuchs
    • 1
  • Dieter Zöbel
    • 2
  • Dietrich Paulus
    • 1
  1. 1.Active Vision Group, Institute for Computational VisualisticsFaculty for Computer Sciences, University of Koblenz-LandauKoblenzGermany
  2. 2.Working Group Realtime Systems, Institute for Software TechniquesFaculty for Computer Sciences, University of Koblenz-LandauKoblenzGermany

Personalised recommendations