Skip to main content

Voronoi-Based Heuristic for Nonholonomic Search-Based Path Planning

Part of the Advances in Intelligent Systems and Computing book series (AISC,volume 302)

Abstract

This paper proposes the use of a Voronoi-based heuristic to significantly speed up search-based nonholonomic path planning. Using generalized Voronoi diagrams (GVD) and in this manner exploiting geometric information about the obstacles, the presented approach is able to considerably reduce computation time while satisfying differential constraints using motion primitives for exploration. A key advantage compared to the common use of Euclidean heuristics is the inherent ability to avoid local minima of the cost function, which can be caused by, e.g., concave obstacles. Therefore, the application of the Voronoi-based heuristic is particularly beneficial in densely cluttered environments.

Keywords

  • Search-based planning
  • Nonholonomic planning
  • Voronoi
  • GVD
  • Heuristic
  • Primitive motion A*

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-08338-4_33
  • Chapter length: 14 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   349.00
Price excludes VAT (USA)
  • ISBN: 978-3-319-08338-4
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   449.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische Mathematik 1 (1959) 269271.

    MathSciNet  CrossRef  Google Scholar 

  2. Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. In: IEEE Transactions on Systems Science and Cybernetics. Volume 4. (1968) 100107.

    Google Scholar 

  3. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach. Prentice Hall (2002).

    Google Scholar 

  4. Likhachev, M., Gordon, G., Thrun, S.: ARA*: Anytime A* with provable bounds on sub-optimality. In: Advances in Neural Information Processing Systems. (2003).

    Google Scholar 

  5. Zhou, R., Hansen, E.: Multiple sequence alignment using A*. In: Proceedings of the National Conference on Artificial Intelligence. (2002).

    Google Scholar 

  6. Chakrabarti, P., Ghosh, S., DeSarkar, S.: Admissiblility of AO* when heuristics overestimate. Artificial Intelligence 34 (1988) 97–113.

    CrossRef  MATH  Google Scholar 

  7. Korf, R.: Linear-space best-first search. Artificial Intelligence 62 (1993) 41–78.

    MathSciNet  CrossRef  MATH  Google Scholar 

  8. Takahashi, O., Schilling, R.J.: Motion planning in a plane using generalized voronoi diagrams. IEEE T. Robotics and Automation 5(2) (1989) 143–150.

    CrossRef  Google Scholar 

  9. Mirtich, B., Canny, J.: Using skeletons for nonholonomic path planning among obstacles (1992).

    Google Scholar 

  10. Garca, D.A.L., Gomez-Bravo, F.: Vodec: A fast voronoi algorithm for car-like robot path planning in dynamic scenarios. Robotica 30(7) (2012) 1189–1201.

    CrossRef  Google Scholar 

  11. Shih, F.Y., Wu, Y.T.: Fast euclidean distance transformation in two scans using a 3x3 neighborhood. Computer Vision and Image Understanding 93(2) (2004) 195–205.

    Google Scholar 

  12. Wang, Q., Langerwisch, M., Wagner, B.: Wide range global path planning for a large number of networked mobile robots based on generalized voronoi diagrams. In: the 3rd IFAC Symposium on Telematics Applications. (October 2013).

    Google Scholar 

  13. Knowles, D., Murray, M.R.: Real time continuous curvature path planner for an autonomous vehicle in an urban environment (2006).

    Google Scholar 

  14. A. Kelly, M.P.: Generating near minimal spanning control sets for constrained motion planning in discrete state spaces. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. (August 2005) 3231–3237.

    Google Scholar 

  15. Smith, D.E., Starkey, J.M.: Effects of model complexity on the performance of automated vehicle steering controllers: Model development, validation and comparison. Vehicle System Dynamics 24(2) (1995) 163–181.

    CrossRef  Google Scholar 

  16. Lau, B., Sprunk, C., Burgard, W.: Improved updating of euclidean distance maps and voronoi diagrams. In: IEEE/RSJ 2010 International Conference on Intelligent Robots and Systems, IROS 2010 - Conference Proceedings. (2010) 281–286.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qi Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, Q., Wulfmeier, M., Wagner, B. (2016). Voronoi-Based Heuristic for Nonholonomic Search-Based Path Planning. In: Menegatti, E., Michael, N., Berns, K., Yamaguchi, H. (eds) Intelligent Autonomous Systems 13. Advances in Intelligent Systems and Computing, vol 302. Springer, Cham. https://doi.org/10.1007/978-3-319-08338-4_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08338-4_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08337-7

  • Online ISBN: 978-3-319-08338-4

  • eBook Packages: EngineeringEngineering (R0)