Layered Mission and Path Planning for MAV Navigation with Partial Environment Knowledge

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 302)

Abstract

Successful operation of micro aerial vehicles in partially known environments requires globally consistent plans based on incomplete environment models and quick reactions to unknown obstacles by means of real-time planning of collision-free trajectories. In this paper, we propose a complete layered mission and navigation planning system based on coarse prior knowledge and local maps from omnidirectional onboard obstacle perception. We generate trajectories in a multilayered approach: from mission planning to global and local trajectory planning to motion control.

Keywords

Path planning Obstacle avoidance MAV 

Notes

Acknowledgments

This work has been supported by grant BE 2556/8 of German Research Foundation (DFG).

References

  1. 1.
    Applegate, D., Bixby, R., Chvatal, V., Cook, W.: Concorde TSP solver (2006).Google Scholar
  2. 2.
    Behnke, S.: Local multiresolution path planning. RoboCup 2003: Robot Soccer World Cup VII pp. 332–343 (2004).Google Scholar
  3. 3.
    Beul, M., Worst, R., Behnke, S.: Nonlinear model-based position control for quadrotor UAVs. In: Proc. of Joint Int. Symp. on Robotics and German Conf. on Robotics (2014).Google Scholar
  4. 4.
    Bouabdallah, S., Murrieri, P., Siegwart, R.: Design and control of an indoor micro quadrotor. In: Proc. of IEEE Int. Conf. on Robotics and Automation (2004).Google Scholar
  5. 5.
    Chambers, A., Achar, S., Nuske, S., Rehder, J., Kitt, B., Chamberlain, L., Haines, J., Scherer, S., Singh, S.: Perception for a river mapping robot. In: Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (2011).Google Scholar
  6. 6.
    Cover, H., Choudhury, S., Scherer, S., Singh, S.: Sparse tangential network (SPARTAN): Motion planning for micro aerial vehicles. In: Proc. of IEEE Int. Conf. on Robotics and Automation (2013).Google Scholar
  7. 7.
    Droeschel, D., Schreiber, M., Behnke, S.: Omnidirectional perception for lightweight UAVs using a continuous rotating laser scanner. In: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. vol. XL-1/W2, pp. 107–112 (2013).Google Scholar
  8. 8.
    Droeschel, D., Stückler, J., Behnke, S.: Local multiresolution representation for 6D motion estimation and mapping with a continuously rotating 3D laser scanner. In: Proc. of IEEE Int. Conf. on Robotics and Automation (2014).Google Scholar
  9. 9.
    Eling, C., Klingbeil, L., Wieland, M., Kuhlmann, H.: A precise position and attitude determination system for lightweight unmanned aerial vehicles. In: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. (2013).Google Scholar
  10. 10.
    Goerzen, C., Kong, Z., Mettler, B.: A survey of motion planning algorithms from the perspective of autonomous UAV guidance. J. of Intelligent and Robotic Systems 57(1–4), 65–100 (2010).CrossRefMATHGoogle Scholar
  11. 11.
    Green, W., Oh, P.: Optic-flow-based collision avoidance. Robotics Automation Magazine, IEEE 15(1), 96–103 (2008).CrossRefGoogle Scholar
  12. 12.
    Gröger, G., Kolbe, T.H., Czerwinski, A., Nagel, C.: Opengis city geography markup language (citygml) encoding standard. Open Geospatial Consortium Inc., Reference number of this OGC\(\bigcirc \!\!\!\!\!{\text{ R }}\) project document: OGC (2008).Google Scholar
  13. 13.
    Grzonka, S., Grisetti, G., Burgard, W.: A fully autonomous indoor quadrotor. IEEE Trans. on Robotics 28(1), 90–100 (2012).CrossRefGoogle Scholar
  14. 14.
    Hart, P.E., Nilsson, N.J., Raphael, B.: A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. on Systems Science and Cybernetics 4(2), 100–107 (1968).Google Scholar
  15. 15.
    Holz, D., Nieuwenhuisen, M., Droeschel, D., Schreiber, M., Behnke, S.: Towards mulimodal omnidirectional obstacle detection for autonomous unmanned aerial vehicles. In: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. vol. XL-1/W2, pp. 201–206 (2013).Google Scholar
  16. 16.
    Honegger, D., Meier, L., Tanskanen, P., Pollefeys, M.: An open source and open hardware embedded metric optical flow cmos camera for indoor and outdoor applications. In: Proc. of IEEE Int. Conf. on Robotics and Automation (2013).Google Scholar
  17. 17.
    Hornung, A., Wurm, K.M., Bennewitz, M., Stachniss, C., Burgard, W.: OctoMap: An efficient probabilistic 3D mapping framework based on octrees. Autonomous Robots (2013).Google Scholar
  18. 18.
    Hrabar, S., Sukhatme, G., Corke, P., Usher, K., Roberts, J.: Combined optic-flow and stereo-based navigation of urban canyons for a UAV. In: Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (2005).Google Scholar
  19. 19.
    Huh, S., Shim, D., Kim, J.: Integrated navigation system using camera and gimbaled laser scanner for indoor and outdoor autonomous flight of UAVs. In: Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. pp. 3158–3163 (2013).Google Scholar
  20. 20.
    Klingbeil, L., Nieuwenhuisen, M., Schneider, J., Eling, C., Droeschel, D., Holz, D., Läbe, T., Förstner, W., Behnke, S., Kuhlmann, H.: Towards autonomous navigation of an UAV-based mobile mapping system. In: Proc. of Int. Conf. on Machine Control & Guidance (MCG) (2014).Google Scholar
  21. 21.
    Loch-Dehbi, S., Dehbi, Y., Plümer, L.: Stochastic reasoning for UAV supported reconstruction of 3d building models. In: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. vol. XL-1/W2, pp. 257–261 (2013).Google Scholar
  22. 22.
    MacAllister, B., Butzke, J., Kushleyev, A., Pandey, H., Likhachev, M.: Path planning for non-circular micro aerial vehicles in constrained environments. In: Proc. of IEEE Int. Conf. on Robotics and Automation (2013).Google Scholar
  23. 23.
    Mori, T., Scherer, S.: First results in detecting and avoiding frontal obstacles from a monocular camera for micro unmanned aerial vehicles. In: Proc. of IEEE Int. Conf. on Robotics and Automation (2013).Google Scholar
  24. 24.
    Nieuwenhuisen, M., Droeschel, D., Schneider, J., Holz, D., Läbe, T., Behnke, S.: Multimodal obstacle detection and collision avoidance for micro aerial vehicles. In: Proc. of European Conference on Mobile Robots (2013).Google Scholar
  25. 25.
    Nieuwenhuisen, M., Schadler, M., Behnke, S.: Predictive potential field-based collision avoidance for multicopters. In: Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci. (2013).Google Scholar
  26. 26.
    Ok, K., Ansari, S., Gallagher, B., Sica, W., Dellaert, F., Stilman, M.: Path planning with uncertainty: Voronoi uncertainty fields. In: Proc. of IEEE Int. Conf. on Robotics and Automation (2013).Google Scholar
  27. 27.
    Puls, T., Kemper, M., Kuke, R., Hein, A.: GPS-based position control and waypoint navigation system for quadrocopters. In: Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems (2009).Google Scholar
  28. 28.
    Quigley, M., Conley, K., Gerkey, B.P., Faust, J., Foote, T., Leibs, J., Wheeler, R., Ng, A.Y.: ROS: An open-source robot operating system. In: ICRA Workshop on Open Source Software (2009).Google Scholar
  29. 29.
    Ross, S., Melik-Barkhudarov, N., Shankar, K.S., Wendel, A., Dey, D., Bagnell, J.A., Hebert, M.: Learning monocular reactive UAV control in cluttered natural environments. In: Proc. of IEEE Int. Conf. on Robotics and Automation (2013).Google Scholar
  30. 30.
    Schmid, K., Tomic, T., Ruess, F., Hirschmüller, H., Suppa, M.: Stereo vision based indoor/outdoor navigation for flying robots. In: Proc. of IEEE/RSJ Int. Conf. on Intelligent Robots and Systems. pp. 3955–3962 (2013)Google Scholar
  31. 31.
    Tomić, T., Schmid, K., Lutz, P., Domel, A., Kassecker, M., Mair, E., Grixa, I., Ruess, F., Suppa, M., Burschka, D.: Toward a fully autonomous UAV: Research platform for indoor and outdoor urban search and rescue. Robotics Automation Magazine, IEEE 19(3), 46–56 (2012).CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Autonomous Intelligent Systems Group, Computer Science Institute VIUniversity of BonnBonnGermany

Personalised recommendations