Abstract
In this paper, we propose an original method to merge maps from different robots. Each map was built using a camera which can be different: perspective, fish-eye, or omnidirectional. Each robot creates its own local map, while the main goal is to build a global map assuming that the paths overlap each other on at least one segment of the path. The first step is to find this common part by using a trajectory correlation method. Then the rigid transformation between trajectories is computed and used to merge paths. Since the robot paths are not sufficient to determine if the matching is correct, an image sensor is required do finish the procedure.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
R. Aragues. Distributed Algorithms on Robotic Nectwoks for Coordination in Perception Tasks. PhD thesis, Universidad de Zaragoza, 2011.
I. Baran, J. Lehtinen, and J. Popovic. Sketching Clothoid Splines Using Shortest Paths. Comput. Graph. Forum, 29(2):655–664, 2010.
Y. Bastanlar. Structure-from-Motion for Systems with Perspective and Omnidirectional Cameras. PhD thesis, Middle East Technical University, 2009.
G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.
M. Cui, J. Femiani, J. Hu, P. Wonka, and A. Razdan. Curve matching for open 2D curves. Pattern Recognition Letters, 30(1):1–10, 2009.
M. Cummins and P. Newman. Appearance-only SLAM at Large Scale with FAB-MAP 2.0. The International Journal of Robotics Research, November 2010.
R. Hartley and A. Zisserman. Multiple view geometry in computer vision, volume 2. Cambridge Univ Press, 2003.
K. Konolige, D. Fox, B. Limketkai, J. Ko, and B. Stewart. Map merging for distributed robot navigation. In Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on, volume 1, pages 212–217. Ieee, 2003.
H. Korrapati, J. Courbon, S. Alizon, and F. Marmoiton. “The Institut Pascal Data Sets”: un jeu de données en extérieur, multicapteurs et datées avec réalité terrain, données d’étalonnage et outils logiciels. ORASIS, June 2013.
H. Korrapati, Y. Mezouar, and P. Martinet. Efficient Topological Mapping with Image Sequence Partitioning. In European Conference on Mobile Robots, ECMR11, Örebro, Sweden, September 2011.
J. P. Lewis. Fast Normalized Cross-Correlation. volume 1995, pages 120–123. Citeseer, 1995.
David G. Lowe. Object Recognition from Local Scale-Invariant Features. In Proceedings of the International Conference on Computer Vision, volume 2, pages 1150–1157, 1999.
David Nistér, Oleg Naroditsky, and James R. Bergen. Visual Odometry. In Computer Vision and Pattern Recognition, pages 652–659, 2004.
L. Puig, J.J. Guerrero, and P. Sturm. Matching of omnidirectional and perspective images using the hybrid fundamental matrix. In Proceedings of the Workshop on Omnidirectional Vision, Camera Networks and Non-Classical Cameras, Marseille, France, 2008.
Eric Royer, Maxime Lhuillier, Michel Dhome, and Jean-Marc Lavest. Monocular Vision for Mobile Robot Localization and Autonomous Navigation. International Journal of Computer Vision, 74(3):237–260, 2007.
M. Smith, I. Baldwin, W. Churchill, R. Paul, and P. Newman. The new college vision and laser data set. The International Journal of Robotics Research, 28(5):595–599, May 2009.
Acknowledgments
This work was supported by a help from the government managed by the ‘Agence Nationale de la Recherche’ for the program ‘Investissements d’Avenir’ in the project LabEx IMobS\({}^{3}\) (ANR7107LABX716701), a help from the ‘Union Européenné’ to the ‘Programme Compétitivité Régionale et Emploi’ (200772013—FEDER—Région Auvergne) and a help from the ‘Région Auvergne’.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing Switzerland
About this paper
Cite this paper
Baudouin, L., Mezouar, Y., Ait-Aider, O., Araújo, H. (2016). Multi-modal Sensors Path Merging. In: Menegatti, E., Michael, N., Berns, K., Yamaguchi, H. (eds) Intelligent Autonomous Systems 13. Advances in Intelligent Systems and Computing, vol 302. Springer, Cham. https://doi.org/10.1007/978-3-319-08338-4_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-08338-4_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08337-7
Online ISBN: 978-3-319-08338-4
eBook Packages: EngineeringEngineering (R0)