Skip to main content

Multi-modal Sensors Path Merging

  • Conference paper
  • First Online:
Intelligent Autonomous Systems 13

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 302))

Abstract

In this paper, we propose an original method to merge maps from different robots. Each map was built using a camera which can be different: perspective, fish-eye, or omnidirectional. Each robot creates its own local map, while the main goal is to build a global map assuming that the paths overlap each other on at least one segment of the path. The first step is to find this common part by using a trajectory correlation method. Then the rigid transformation between trajectories is computed and used to merge paths. Since the robot paths are not sufficient to determine if the matching is correct, an image sensor is required do finish the procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. R. Aragues. Distributed Algorithms on Robotic Nectwoks for Coordination in Perception Tasks. PhD thesis, Universidad de Zaragoza, 2011.

    Google Scholar 

  2. I. Baran, J. Lehtinen, and J. Popovic. Sketching Clothoid Splines Using Shortest Paths. Comput. Graph. Forum, 29(2):655–664, 2010.

    Article  Google Scholar 

  3. Y. Bastanlar. Structure-from-Motion for Systems with Perspective and Omnidirectional Cameras. PhD thesis, Middle East Technical University, 2009.

    Google Scholar 

  4. G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.

    Google Scholar 

  5. M. Cui, J. Femiani, J. Hu, P. Wonka, and A. Razdan. Curve matching for open 2D curves. Pattern Recognition Letters, 30(1):1–10, 2009.

    Article  MATH  Google Scholar 

  6. M. Cummins and P. Newman. Appearance-only SLAM at Large Scale with FAB-MAP 2.0. The International Journal of Robotics Research, November 2010.

    Google Scholar 

  7. R. Hartley and A. Zisserman. Multiple view geometry in computer vision, volume 2. Cambridge Univ Press, 2003.

    Google Scholar 

  8. K. Konolige, D. Fox, B. Limketkai, J. Ko, and B. Stewart. Map merging for distributed robot navigation. In Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on, volume 1, pages 212–217. Ieee, 2003.

    Google Scholar 

  9. H. Korrapati, J. Courbon, S. Alizon, and F. Marmoiton. “The Institut Pascal Data Sets”: un jeu de données en extérieur, multicapteurs et datées avec réalité terrain, données d’étalonnage et outils logiciels. ORASIS, June 2013.

    Google Scholar 

  10. H. Korrapati, Y. Mezouar, and P. Martinet. Efficient Topological Mapping with Image Sequence Partitioning. In European Conference on Mobile Robots, ECMR11, Örebro, Sweden, September 2011.

    Google Scholar 

  11. J. P. Lewis. Fast Normalized Cross-Correlation. volume 1995, pages 120–123. Citeseer, 1995.

    Google Scholar 

  12. David G. Lowe. Object Recognition from Local Scale-Invariant Features. In Proceedings of the International Conference on Computer Vision, volume 2, pages 1150–1157, 1999.

    Google Scholar 

  13. David Nistér, Oleg Naroditsky, and James R. Bergen. Visual Odometry. In Computer Vision and Pattern Recognition, pages 652–659, 2004.

    Google Scholar 

  14. L. Puig, J.J. Guerrero, and P. Sturm. Matching of omnidirectional and perspective images using the hybrid fundamental matrix. In Proceedings of the Workshop on Omnidirectional Vision, Camera Networks and Non-Classical Cameras, Marseille, France, 2008.

    Google Scholar 

  15. Eric Royer, Maxime Lhuillier, Michel Dhome, and Jean-Marc Lavest. Monocular Vision for Mobile Robot Localization and Autonomous Navigation. International Journal of Computer Vision, 74(3):237–260, 2007.

    Article  Google Scholar 

  16. M. Smith, I. Baldwin, W. Churchill, R. Paul, and P. Newman. The new college vision and laser data set. The International Journal of Robotics Research, 28(5):595–599, May 2009.

    Google Scholar 

Download references

Acknowledgments

This work was supported by a help from the government managed by the ‘Agence Nationale de la Recherche’ for the program ‘Investissements d’Avenir’ in the project LabEx IMobS\({}^{3}\) (ANR7107LABX716701), a help from the ‘Union Européenné’ to the ‘Programme Compétitivité Régionale et Emploi’ (200772013—FEDER—Région Auvergne) and a help from the ‘Région Auvergne’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Léo Baudouin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Baudouin, L., Mezouar, Y., Ait-Aider, O., Araújo, H. (2016). Multi-modal Sensors Path Merging. In: Menegatti, E., Michael, N., Berns, K., Yamaguchi, H. (eds) Intelligent Autonomous Systems 13. Advances in Intelligent Systems and Computing, vol 302. Springer, Cham. https://doi.org/10.1007/978-3-319-08338-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08338-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08337-7

  • Online ISBN: 978-3-319-08338-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics