Multi-modal Sensors Path Merging

  • Léo Baudouin
  • Youcef Mezouar
  • Omar Ait-Aider
  • Helder Araújo
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 302)

Abstract

In this paper, we propose an original method to merge maps from different robots. Each map was built using a camera which can be different: perspective, fish-eye, or omnidirectional. Each robot creates its own local map, while the main goal is to build a global map assuming that the paths overlap each other on at least one segment of the path. The first step is to find this common part by using a trajectory correlation method. Then the rigid transformation between trajectories is computed and used to merge paths. Since the robot paths are not sufficient to determine if the matching is correct, an image sensor is required do finish the procedure.

Keywords

Map merging Autonomous robots Multi-robots Vision Loop-closure 

Notes

Acknowledgments

This work was supported by a help from the government managed by the ‘Agence Nationale de la Recherche’ for the program ‘Investissements d’Avenir’ in the project LabEx IMobS\({}^{3}\) (ANR7107LABX716701), a help from the ‘Union Européenné’ to the ‘Programme Compétitivité Régionale et Emploi’ (200772013—FEDER—Région Auvergne) and a help from the ‘Région Auvergne’.

References

  1. 1.
    R. Aragues. Distributed Algorithms on Robotic Nectwoks for Coordination in Perception Tasks. PhD thesis, Universidad de Zaragoza, 2011.Google Scholar
  2. 2.
    I. Baran, J. Lehtinen, and J. Popovic. Sketching Clothoid Splines Using Shortest Paths. Comput. Graph. Forum, 29(2):655–664, 2010.CrossRefGoogle Scholar
  3. 3.
    Y. Bastanlar. Structure-from-Motion for Systems with Perspective and Omnidirectional Cameras. PhD thesis, Middle East Technical University, 2009.Google Scholar
  4. 4.
    G. Bradski. The OpenCV Library. Dr. Dobb’s Journal of Software Tools, 2000.Google Scholar
  5. 5.
    M. Cui, J. Femiani, J. Hu, P. Wonka, and A. Razdan. Curve matching for open 2D curves. Pattern Recognition Letters, 30(1):1–10, 2009.CrossRefMATHGoogle Scholar
  6. 6.
    M. Cummins and P. Newman. Appearance-only SLAM at Large Scale with FAB-MAP 2.0. The International Journal of Robotics Research, November 2010.Google Scholar
  7. 7.
    R. Hartley and A. Zisserman. Multiple view geometry in computer vision, volume 2. Cambridge Univ Press, 2003.Google Scholar
  8. 8.
    K. Konolige, D. Fox, B. Limketkai, J. Ko, and B. Stewart. Map merging for distributed robot navigation. In Intelligent Robots and Systems, 2003.(IROS 2003). Proceedings. 2003 IEEE/RSJ International Conference on, volume 1, pages 212–217. Ieee, 2003.Google Scholar
  9. 9.
    H. Korrapati, J. Courbon, S. Alizon, and F. Marmoiton. “The Institut Pascal Data Sets”: un jeu de données en extérieur, multicapteurs et datées avec réalité terrain, données d’étalonnage et outils logiciels. ORASIS, June 2013.Google Scholar
  10. 10.
    H. Korrapati, Y. Mezouar, and P. Martinet. Efficient Topological Mapping with Image Sequence Partitioning. In European Conference on Mobile Robots, ECMR11, Örebro, Sweden, September 2011.Google Scholar
  11. 11.
    J. P. Lewis. Fast Normalized Cross-Correlation. volume 1995, pages 120–123. Citeseer, 1995.Google Scholar
  12. 12.
    David G. Lowe. Object Recognition from Local Scale-Invariant Features. In Proceedings of the International Conference on Computer Vision, volume 2, pages 1150–1157, 1999.Google Scholar
  13. 13.
    David Nistér, Oleg Naroditsky, and James R. Bergen. Visual Odometry. In Computer Vision and Pattern Recognition, pages 652–659, 2004.Google Scholar
  14. 14.
    L. Puig, J.J. Guerrero, and P. Sturm. Matching of omnidirectional and perspective images using the hybrid fundamental matrix. In Proceedings of the Workshop on Omnidirectional Vision, Camera Networks and Non-Classical Cameras, Marseille, France, 2008.Google Scholar
  15. 15.
    Eric Royer, Maxime Lhuillier, Michel Dhome, and Jean-Marc Lavest. Monocular Vision for Mobile Robot Localization and Autonomous Navigation. International Journal of Computer Vision, 74(3):237–260, 2007.CrossRefGoogle Scholar
  16. 16.
    M. Smith, I. Baldwin, W. Churchill, R. Paul, and P. Newman. The new college vision and laser data set. The International Journal of Robotics Research, 28(5):595–599, May 2009.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Léo Baudouin
    • 1
  • Youcef Mezouar
    • 1
  • Omar Ait-Aider
    • 1
  • Helder Araújo
    • 2
  1. 1.Institut PascalUniversité Blaise PascalAubièreFrance
  2. 2.Institute for Systems and RoboticsUniversity of CoimbraCoimbraPortugal

Personalised recommendations