Enhanced Stochastic Mobility Prediction on Unstructured Terrain Using Multi-output Gaussian Processes

  • Sin Ting LuiEmail author
  • Thierry Peynot
  • Robert Fitch
  • Salah Sukkarieh
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 302)


Outdoor robots such as planetary rovers must be able to navigate safely and reliably in order to successfully perform missions in remote or hostile environments. Mobility prediction is critical to achieving this goal due to the inherent control uncertainty faced by robots traversing natural terrain. We propose a novel algorithm for stochastic mobility prediction based on multi-output Gaussian process regression. Our algorithm considers the correlation between heading and distance uncertainty and provides a predictive model that can easily be exploited by motion planning algorithms. We evaluate our method experimentally and report results from over 30 trials in a Mars-analogue environment that demonstrate the effectiveness of our method and illustrate the importance of mobility prediction in navigating challenging terrain.


Mobility prediction Learning Planetary rover Stochastic motion planning 



This work was supported in part by the Australian Centre for Field Robotics (ACFR) and the NSW State Government.


  1. 1.
    Johnson, J., ed.: Mars Scientific Goals, Objectives, Investigations, and Priorities. Mars Exploration Program Analysis Group (MEPAG), NASA/JPL (2010)
  2. 2.
    McAllister, R., Peynot, T., Fitch, R., Sukkarieh, S.: Motion planning and stochastic control with experimental validation on a planetary rover. In: Proc. of IEEE/RSJ IROS. (2012)Google Scholar
  3. 3.
    Peynot, T., Lui, S.T., McAllister, R., Fitch, R., Sukkarieh, S.: Learned stochastic mobility prediction for planning with control uncertainty on unstructured terrain. Journal of Field Robotics (2014) In press.Google Scholar
  4. 4.
    Ishigami, G., Kewlani, G., Iagnemma, K.: Statistical mobility prediction for planetary surface exploration rovers in uncertain terrain. In: Proc. of IEEE ICRA. (2010)Google Scholar
  5. 5.
    Krebs, A., Pradalier, C., Siegwart, R.: Adaptive rover behavior based on online empirical evaluation: Rover-terrain interaction and near-to-far learning. Journal of Field Robotics 27(2) (2010) 158–180Google Scholar
  6. 6.
    Brooks, C.A., Iagnemma, K.: Self-supervised terrain classification for planetary surface exploration rovers. Journal of Field Robotics 29(3) (2012) 445–468CrossRefGoogle Scholar
  7. 7.
    Papadakis, P.: Terrain traversability analysis methods for unmanned ground vehicles: A survey. Engineering Applications of Artificial Intelligence 26(4) (2013) 1373–1385MathSciNetCrossRefGoogle Scholar
  8. 8.
    Goldberg, S.B., Maimone, M.W., Matthies, L.: Stereo vision and rover navigation software for planetary exploration. In: Proc. of IEEE Aerospace Conference. (2002)Google Scholar
  9. 9.
    Helmick, D.M., Cheng, Y., Clouse, D.S., Matthies, L.H., Roumeliotis, S.I.: Path following using visual odometry for a mars rover in high-slip environments. In: Proc. of IEEE Aerospace Conference. (2004)Google Scholar
  10. 10.
    Chhaniyara, S., Brunskill, C., Yeomans, B., Matthews, M., Saaj, C., Ransom, S., Richter, L.: Terrain trafficability analysis and soil mechanical property identification for planetary rovers: A survey. Journal of Terramechanics 49(2) (2012) 115–128CrossRefGoogle Scholar
  11. 11.
    Iagnemma, K., Kang, S., Shibly, H., Dubowsky, S.: Online terrain parameter estimation for wheeled mobile robots with application to planetary rovers. IEEE Transactions on Robotics 20(5) (2004) 921–927CrossRefGoogle Scholar
  12. 12.
    Helmick, D., Angelova, A., Matthies, L.: Terrain adaptive navigation for planetary rovers. Journal of Field Robotics 26(4) (2009) 391–410CrossRefGoogle Scholar
  13. 13.
    Karumanchi, S., Iagnemma, K.: Reactive control in environments with hard and soft hazards. In: Proc. of IEEE/RSJ IROS. (2012)Google Scholar
  14. 14.
    Rasmussen, C.E., Williams, C.: Gaussian Processes for Machine Learning. MIT Press (2006)Google Scholar
  15. 15.
    Boyle, P., Frean, M.: Dependent gaussian processes. In Saul, L., Weiss, Y., Bouttou, L., eds.: Advances in Neural Information Processing Systems (NIPS). Volume 17. MIT Press (2005)Google Scholar
  16. 16.
    Bonilla, E., Chai, K.M., Williams, C.: Multi-task gaussian process prediction. In Platt, J., Koller, D., Singer, Y., Roweis, S., eds.: Advances in Neural Information Processing Systems (NIPS). Volume 20. MIT Press (2008)Google Scholar
  17. 17.
    Alvarez, M.A., Lawrence, N.D.: Sparse convolved gaussian processes for multi-output regression. In Koller, D., Schuurmans, D., Bengio, Y., Bottou, L., eds.: Advances in Neural Information Processing Systems (NIPS). Volume 21. MIT Press, Cambridge, MA (2009) 57–64Google Scholar
  18. 18.
    LaValle, S.: Planning Algorithms. Cambridge University Press (2006)Google Scholar
  19. 19.
    Tarokh, M., McDermott, G.J.: Kinematics modeling and analyses of articulated rovers. IEEE Transactions on Robotics 21(4) (2005) 539–553CrossRefGoogle Scholar
  20. 20.
    Moore, D.S., McCabe, G.P.: Introduction to the Practice of Statistics. 2nd edn. Freeman and co., New York (1993)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  • Sin Ting Lui
    • 1
    Email author
  • Thierry Peynot
    • 1
    • 2
  • Robert Fitch
    • 1
  • Salah Sukkarieh
    • 1
  1. 1.Australian Centre for Field RoboticsThe University of SydneySydneyAustralia
  2. 2.School of Electrical Engineering and Computer ScienceQueensland University of TechnologyBrisbaneAustralia

Personalised recommendations