From Stigmergy to Affordance: The Mechanical Basis of Robot Motion Control

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 302)


In the last decade, the development of multi robot systems has shown with growing evidence how a well-balanced deliberative-reactive coordination can provide a group of robots with an efficient and robust collective behavior. In this paper, we want to cover exhaustively this issue from the point of view of the single agent in the general model we have already presented as “roboticle framework”. Starting from a pure mechanical interpretation of an autonomous robot motion we shall understand the notions of stigmergy and affordance by maintaining at the sub-symbolic level all the relevant information useful to drive properly the robot while it participates to the collective action. Specifically, we shall focus on some interesting parameters through which the designer of the single robot governor’s unit could be helped to trigger its individual behavior within a collective scenario.


Roboticle Autopoietic loop Robot coordination Stigmergy 



This work was partially supported by a grant of the University of Padua’s Special Project on Mobility, Perception, and Coordination for a Team of Autonomous Robots.


  1. 1.
    Gibson, J.J.: The Ecological Approach to Visual Perception. Psychology Pr (1979)Google Scholar
  2. 2.
    Gibson, J.J.: The theory of affordances. In Shaw, R., Bransford, J., eds.: Perceiving, Acting, and Knowing: Toward an Ecological Psychology. Lawrence Erlbaum Associates, (1977) 127–143Google Scholar
  3. 3.
    Grassé, P.P.: La reconstruction du nid et les coordinations inter-individuelles chez bellicositermes natalensis et cubitermes. Insectes Sociaux 6 (1959) 41–81Google Scholar
  4. 4.
    D’Angelo, A., Ota, J., Pagello, E.: How intelligent behavior can emerge from a group of roboticles moving around. In: IROS 2003, Las Vegas (NV) (2003) 1733–1738Google Scholar
  5. 5.
    D’Angelo, A., Pagello, E.: Making collective behaviours to work through implicit communication. In Casals, A., Dillmann, R., Giralt, G., eds.: ICRA-05, Barcelona (E) (2005) 81–87Google Scholar
  6. 6.
    D’Angelo, A., Pagello, E.: From mobility to autopoiesis: acquiring environmental information to deliver commands to the effectors. In: IAS-9. IOS Press, Tokyo (2006) 640–647Google Scholar
  7. 7.
    D’Angelo, A., Funato, T., Pagello, E.: Motion control of dense robot colony using thermodynamics. In: DARS08. Springer, Tsukuba (J) (2008) 85–96Google Scholar
  8. 8.
    D’Angelo, A., Pagello, E.: A thermodynamic framework for robot colony control. In: IAS-11. IOS Press, Ottawa (2010) 259–270Google Scholar
  9. 9.
    D’Angelo, A., Pagello, E.: Robot colony mobility in a thermodynamics frame. In: submitted to IAS-12, Jeju Island (Korea) (2012)Google Scholar
  10. 10.
    S.D. Jantz, K.L. Doty, J.A. Bagnell, I.R. Zapata: Kinetics of robotics: The development of universal metrics in robotic swarms. In: Florida Conference on Recent Advances in Robotics, Miami, USA (1997)Google Scholar
  11. 11.
    W. Kerr, D. Spears, W. Spears, D. Thayer: Two formal gas models for multi-agent sweeping and obstacle avoidance. In: FAABS 2004. Number 3228 in Lecture Notes in Artificial Intelligence. Springer, Berlin, Heidelberg (2005) 111–130Google Scholar
  12. 12.
    M. Kinoshita, M. Watanabe, T. Kawakami, H. Yokoi, Y. Kakazu: Macroscopic quantitative observation of multi-robot behavior. In: Computational Intelligence and Multimedia Applications, Yokosuka, Japan (2001) 190–194Google Scholar
  13. 13.
    Pisokas, J., Nehmzow, U.: Subsymbolic action planning for robots: Generalised representations of experience. In Groen, F., N., A., A., B., E., Y., B., K., eds.: 8th Conference on Intelligent Autonomous Systems, IOS Press (2004) 666–673Google Scholar
  14. 14.
    D’Angelo, A., Montesello, F., Pagello, E.: Building autonomy within self-organizing dynamical agents. In Pagello, E., Groen, F., Arai, T., Dillmann, R., Stentz, A., eds.: Intelligent Autonomous Systems 6 (IAS-6), Venezia (I), IOS Press (2000) 43–50Google Scholar
  15. 15.
    D’Angelo, A., Montesello, F., Pagello, E.: Can representation be liberated from symbolism: Modeling robot actions with roboticles. In Horn, W., ed.: ECAI-2000, Berlin (D) (2000) 658–662Google Scholar
  16. 16.
    D’Angelo, A., Pagello, E., Yuasa, H.: Issues on autonomous agents from a roboticle perspective. Journal of Intelligent and Robotic Systems (2008) 389–416Google Scholar
  17. 17.
    Arkin, R.: Behavior-Based Robotics. The MIT Press (1998)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2016

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceUniversity of UdineUdineItaly
  2. 2.Department of Electronics and Computer ScienceUniversity of PaduaPaduaItaly

Personalised recommendations