Skip to main content

A basic scientific understanding of diabetic retinopathy

  • Chapter
  • First Online:
Managing Diabetic Eye Disease in Clinical Practice
  • 1014 Accesses

Abstract

Diabetic retinopathy (DR) is classified into nonproliferative diabetic retinopathy (NPDR) and proliferative diabetic retinopathy (PDR), with the latter identified by the growth of new retinal blood vessels. In this chapter, we will review our current understanding on the pathophysiology of DR.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Simo R, Hernandez C, European Consortium for the Early Treatment of Diabetic Retinopathy (EUROCONDOR). Neurodegeneration in the diabetic eye: new insights and therapeutic perspectives. Trends Endocrinol Metab. 2014;25:23-33.

    Google Scholar 

  2. Gabbay KH. The sorbitol pathway and the complications of diabetes. N Engl J Med. 1973;288:831-836.

    Google Scholar 

  3. Szwergold BS, Kappler F, Brown TR. Identification of fructose 3-phosphate in the lens of diabetic rats. Science. 1990;247:451-454.

    Google Scholar 

  4. Barnett PA, Gonzalez RG, Chylack LT,Jr, Cheng HM. The effect of oxidation on sorbitol pathway kinetics. Diabetes. 1986;35:426-432.

    Google Scholar 

  5. Lassegue B, Clempus RE. Vascular NAD(P)H oxidases: Specific features, expression, and regulation. Am J Physiol Regul Integr Comp Physiol. 2003;285:R277-R297.

    Google Scholar 

  6. Drel VR, Pacher P, Ali TK, et al. Aldose reductase inhibitor fidarestat counteracts diabetesassociated cataract formation, retinal oxidative-nitrosative stress, glial activation, and apoptosis. Int J Mol Med. 2008;21:667-676.

    Google Scholar 

  7. Dagher Z, Park YS, Asnaghi V, Hoehn T, Gerhardinger C, Lorenzi M. Studies of rat and human retinas predict a role for the polyol pathway in human diabetic retinopathy. Diabetes. 2004;53:2404-2411.

    Google Scholar 

  8. Miwa K, Nakamura J, Hamada Y, et al. The role of polyol pathway in glucose-induced apoptosis of cultured retinal pericytes. Diabetes Res Clin Pract. 2003;60:1-9.

    Google Scholar 

  9. Frank RN. Aldose reductase inhibition. the chemical key to the control of diabetic retinopathy? Arch Ophthalmol. 1990;108:1229-1231.

    Google Scholar 

  10. Kador PF, Akagi Y, Terubayashi H, Wyman M, Kinoshita JH. Prevention of pericyte ghost formation in retinal capillaries of galactose-fed dogs by aldose reductase inhibitors. Arch Ophthalmol. 1988;106:1099-1102.

    Google Scholar 

  11. Engerman RL, Kern TS. Hyperglycemia and development of glomerular pathology: Diabetes compared with galactosemia. Kidney Int. 1989;36:41-45.

    Google Scholar 

  12. Roy S, Lorenzi M. Early biosynthetic changes in the diabetic-like retinopathy of galactose-fed rats. Diabetologia. 1996;39:735-738.

    Google Scholar 

  13. Kim JH, Kim JH, Jun HO, Yu YS, Kim KW. Inhibition of protein kinase C delta attenuates bloodretinal barrier breakdown in diabetic retinopathy. Am J Pathol. 2010;176:1517-1524.

    Google Scholar 

  14. Stitt AW, Jenkins AJ, Cooper ME. Advanced glycation end products and diabetic complications. Expert Opin Investig Drugs. 2002;11:1205-1223.

    Google Scholar 

  15. Zong H, Ward M, Stitt AW. AGEs, RAGE, and diabetic retinopathy. Curr Diab Rep. 2011;11:244-252.

    Google Scholar 

  16. Kim J, Kim CS, Sohn E, et al. Aminoguanidine protects against apoptosis of retinal ganglion cells in zucker diabetic fatty rats. Eur Rev Med Pharmacol Sci. 2014;18:1573-1578.

    Google Scholar 

  17. Nagai R, Shirakawa J, Ohno R, Moroishi N, Nagai M. Inhibition of AGEs formation by natural products. Amino Acids. 2014;46:261-266.

    Google Scholar 

  18. Wang QJ. PKD at the crossroads of DAG and PKC signaling. Trends Pharmacol Sci. 2006;27:317-323.

    Google Scholar 

  19. Aiello LP, Bursell SE, Clermont A, et al. Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor. Diabetes. 1997;46:1473-1480.

    Google Scholar 

  20. Aiello LP, Clermont A, Arora V, Davis MD, Sheetz MJ, Bursell SE. Inhibition of PKC beta by oral administration of ruboxistaurin is well tolerated and ameliorates diabetes-induced retinal hemodynamic abnormalities in patients. Invest Ophthalmol Vis Sci. 2006;47:86-92.

    Google Scholar 

  21. Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. N Engl J Med. 2012;366:1227-1239.

    Google Scholar 

  22. Hennis A, Wu SY, Nemesure B, Leske MC, Barbados Eye Studies Group. Hypertension, diabetes, and longitudinal changes in intraocular pressure. Ophthalmology. 2003;110:908-914.

    Google Scholar 

  23. Kohner EM. Diabetic retinopathy. BMJ. 1993;307:1195-1199.

    Google Scholar 

  24. Funatsu H, Yamashita H, Nakanishi Y, Hori S. Angiotensin II and vascular endothelial growth factor in the vitreous fluid of patients with proliferative diabetic retinopathy. Br J Ophthalmol. 2002;86:311-315.

    Google Scholar 

  25. Ebrahimian TG, Tamarat R, Clergue M, Duriez M, Levy BI, Silvestre JS. Dual effect of angiotensinconverting enzyme inhibition on angiogenesis in type 1 diabetic mice. Arterioscler Thromb Vasc Biol. 2005;25:65-70.

    Google Scholar 

  26. Sjolie AK, Klein R, Porta M, et al. Effect of candesartan on progression and regression of retinopathy in type 2 diabetes (DIRECT-protect 2): A randomised placebo-controlled trial. Lancet. 2008;372:1385-1393.

    Google Scholar 

  27. Kaul K, Hodgkinson A, Tarr JM, Kohner EM, Chibber R. Is inflammation a common retinal-renalnerve pathogenic link in diabetes? Curr Diabetes Rev. 2010;6:294-303.

    Google Scholar 

  28. Adamis AP, Berman AJ. Immunological mechanisms in the pathogenesis of diabetic retinopathy. Semin Immunopathol. 2008;30:65-84.

    Google Scholar 

  29. Shibuya M. Differential roles of vascular endothelial growth factor receptor-1 and receptor-2 in angiogenesis. J Biochem Mol Biol. 2006;39:469-478.

    Google Scholar 

  30. Gerber HP, McMurtrey A, Kowalski J, et al. Vascular endothelial growth factor regulates endothelial cell survival through the phosphatidylinositol 3’-kinase/Akt signal transduction pathway. requirement for flk-1/KDR activation. J Biol Chem. 1998;273:30336-30343.

    Google Scholar 

  31. Zachary I. VEGF signalling: Integration and multi-tasking in endothelial cell biology. Biochem Soc Trans. 2003;31(Pt 6):1171-1177.

    Google Scholar 

  32. Holmes K, Roberts OL, Thomas AM, Cross MJ. Vascular endothelial growth factor receptor-2: Structure, function, intracellular signalling and therapeutic inhibition. Cell Signal. 2007;19:2003-2012.

    Google Scholar 

  33. Regnier S, Malcolm W, Allen F, Wright J, Bezlyak V. Efficacy of anti-VEGF and laser photocoagulation in the treatment of visual impairment due to diabetic macular edema: A systematic review and network meta-analysis. PLoS One. 2014;9:e102309.

    Google Scholar 

  34. Brownlee M. The pathobiology of diabetic complications: A unifying mechanism. Diabetes. 2005;54:1615-1625.

    Google Scholar 

  35. Luger K, Mader AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature. 1997;389:251-260.

    Google Scholar 

  36. El-Osta A, Brasacchio D, Yao D, et al. Transient high glucose causes persistent epigenetic changes and altered gene expression during subsequent normoglycemia. J Exp Med. 2008;205:2409-2417.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sears, N., Yuan, A. (2015). A basic scientific understanding of diabetic retinopathy. In: Singh, R. (eds) Managing Diabetic Eye Disease in Clinical Practice. Adis, Cham. https://doi.org/10.1007/978-3-319-08329-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08329-2_2

  • Published:

  • Publisher Name: Adis, Cham

  • Print ISBN: 978-3-319-08328-5

  • Online ISBN: 978-3-319-08329-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics