# Pairwise Comparison Matrices in Decision Making

Chapter
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 677)

## Abstract

In multicriteria decision making context, a pairwise comparison matrix is a helpful tool to determine the weighted ranking of alternatives or criteria. The entry of the matrix can assume different meanings: it can be a preference ratio (multiplicative case) or a preference difference (additive case), or, it belongs to the unit interval and measures the distance from the indifference that is expressed by 0.5 (fuzzy case). When comparing two elements, the decision maker assigns the value from a scale to any pair of alternatives representing the element of the pairwise preference matrix. Here, we investigate particularly relations between transitivity and consistency of preference matrices being understood differently with respect to the type of preference matrix. By various methods for deriving priorities from various types of preference matrices we obtain the corresponding priority vectors for final ranking of alternatives. The obtained results are also applied to situations where some elements of the fuzzy preference matrix are missing. Finally, a unified framework for pairwise comparison matrices based on abelian linearly ordered groups is presented. Illustrative numerical examples are supplemented.

## Keywords

Analytic Hierarchy Process Consistency Index Pairwise Comparison Matrix Priority Vector Fuzzy Preference Relation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 1.
Aczel, J.: Lectures on Functional Equation and Their Applications. Academic Press, New York and London (1966)Google Scholar
2. 2.
Aguaron, J., Moreno-Jimenez, J.M.: The geometric consistency index: Approximated thresholds. Eur. J. Oper. Res. 147(1), 137–145 (2003)
3. 3.
Alonso, S., Chiclana, F., Herrera. F., Herrera-Viedma, E., Alcala-Fdes, J., Porcel, C.: A consistency-based procedure to estimate missing pairwise preference values. Int. J. Intell. Syst. 23, 155–175 (2008)Google Scholar
4. 4.
Barzilai, J.: Deriving weights from pairwise comparison matrices. J. Oper. Res. Soc. 48(12), 1226–1232 (1997)
5. 5.
Barzilai, J.: Consistency measures for pairwise comparison matrices. J. Multicrit. Dec. Anal. 7, 123–132 (1998)
6. 6.
Barzilai, J.: Notes on the analytic hierarchy process. In: Proceedings of the NSF Design and Manufacturing Research Conference, pp. 1–6. Tampa, Florida (2001)Google Scholar
7. 7.
Barzilai, J.: Preference function modeling: The mathematical foundations of decision theory. In: Ehrgott, M. et al. (eds.) Trends in Multiple Criteria Decision Analysis, pp. 57–86. Springer, Berlin-Heidelberg-New York (2003)Google Scholar
8. 8.
Blankmeyer, E.: Approaches to consistency adjustments. J. Optim. Theory Appl. 154, 479–488 (1987)
9. 9.
Bourbaki, N.: Algebra II. Springer, Heidelberg-New York-Berlin (1990)Google Scholar
10. 10.
Brin, S., Page. L.: The anatomy of a large-scale hypertextualweb search engine. Comput. Networks ISDN Syst. 30, 107–117 (1998)Google Scholar
11. 11.
Cavallo, B., D’Apuzzo, L.: A general unified framework for pairwise comparison matrices in multicriterial methods. Int. J. Intell. Syst. 24(4), 377–398 (2009)
12. 12.
Cavallo, B., D’Apuzzo, L.: Characterizations of consistent pairwise comparison matrices over abelian linearly ordered groups. Int. J. Intell. Syst. 25, 1035–1059 (2010)
13. 13.
Cavallo, B., D’Apuzzo, L., Squillante, M.: About a consistency index for pairwise comparison matrices over a divisible alo-group. Int. J. Intell. Syst. 27, 153–175 (2012)
14. 14.
Cavallo, B., D’Apuzzo, L.: Deriving weights from a pairwise comparison matrix over an alo/group. Soft Comput. 16, 353–366 (2012)
15. 15.
Chang, J.S.K. et al.: Note on deriving weights from pairwise comparison matrices in AHP. Inform. Manag. Sci. 19(3), 507–517 (2008)Google Scholar
16. 16.
Chen, Q., Triantaphillou, E.: Estimating data for multi-criteria decision making problems: optimization techniques. In: Pardalos, P.M., Floudas, C. (eds.) Encyclopedia of Optimization, vol. 2. Kluwer Academic, Boston (2001)Google Scholar
17. 17.
Chiclana, F., Herrera, F., Herrera-Viedma, E.: Integrating multiplicative preference relations in a multipurpose decision making model based on fuzzy preference relations. Fuzzy Sets Syst. 112, 277–291 (2001)
18. 18.
Chiclana, F. Herrera, F., Herrera-Viedma, E., Alonso, S.: Some induced ordered weighted averaging operators and their use for solving group decision-making problems based on fuzzy preference relations. Eur. J. Operat. Res. 182, 383–399 (2007)
19. 19.
Chiclana, F., Herrera-Viedma, E., Alonso, S.: A note on two methods for estimating pairwise preference values. IEE Trans. Syst. Man Cybern. 39(6), 1628–1633 (2009)
20. 20.
Choo, E., Wedley, W.: A common framework for deriving preference values from pairwise comparison matrices. Comput. Oper. Res. 31(6), 893–908 (2004)
21. 21.
Cook, W., Kress, M.: Deriving weights from pairwise comparison ratio matrices: An axiomatic approach. Eur. J. Oper. Res. 37(3), 355–362 (1988)
22. 22.
Crawford, G, Williams, C.: A note on the analysis of subjective judgment matrices. J. Math. Psychol. 29, 25–40 (1985)
23. 23.
Dopazo, E., Gonzales-Pachon, J.: Consistency-driven approximation of a pairwise comparison matrix. Kybernetika 39(5), 561–568 (2003)Google Scholar
24. 24.
Dubois, D., Prade, H.: Fuzzy Sets and Systems: Theory and Application. Academic Press, New York (1980)Google Scholar
25. 25.
Fan, Z.-P., Ma, J., Zhang, Q.: An approach to multiple attribute decision making based on fuzzy preference information on alternatives. Fuzzy Sets Syst. 131, 101–106 (2002)
26. 26.
Fan, Z.-P., Hu, G.-F., Xiao, S.-H.: A method for multiple attribute decision-making with the fuzzy preference relation on alternatives. Comput. Ind. Eng. 46, 321–327 (2004)
27. 27.
Fan, Z.-P., Ma, J., Jiang, Y.-P., Sun, Y.-H., Ma, L.: A goal programming approach to group decision making based on multiplicative preference relations and fuzzy preference relations. Eur. J. Oper. Res. 174, 311–321 (2006)
28. 28.
Fedrizzi, M., Giove, S.: Incomplete pairwise comparison and consistency optimization. Eur. J. Oper. Res. 183(1), 303–313 (2007)
29. 29.
Fedrizzi, M., Brunelli, M.: On the priority vector associated with a reciprocal relation and a pairwise comparison matrix. Soft Comput. 14(2), 639–645 (2010)
30. 30.
Fiedler, M., Nedoma, J., Ramík, J., Rohn, J., Zimmermann, K.: Linear Optimization Problems with Inexact Data. Springer, Berlin/Heidelberg/New York/Hong Kong/London/Milan/Tokyo (2006)Google Scholar
31. 31.
Figueira, J., Greco, S., Ehrgott, M.: Multiple Criteria Decision Analysis: State of the Art Surveys. Springer, New York (2005)Google Scholar
32. 32.
Fodor, J., Roubens, M.: Fuzzy Preference Modeling and Multicriteria Decision Support. Kluwer, Dordrecht (1994)
33. 33.
Gantmacher, F.R.: The Theory of Matrices, vol.1. Chelsea Publ. Comp. (1977)Google Scholar
34. 34.
Gong, Z.-W.: Least-square method to priority of the fuzzy preference relations with incomplete information. Int. J. Approx. Reason. 47 (2008), 258–264.
35. 35.
Gong, Z., Li, L., Cao, J., Zhou, F.: On additive consistent properties of the intuitionistic fuzzy preference relation. Int. J. Inform. Tech. Dec. Making 9(6), 1009–1025 (2010)
36. 36.
Harker, P.T.: Alternative modes of questioning in the analytic hierarchy process. Math. Modell. 9(3–5), 353–360 (1987)
37. 37.
Harker, P.T.: Incomplete pairwise comparisons in the analytic hierarcy process. Math. Modell. 9(11), 837–848 (1987)
38. 38.
Herrera-Viedma, E., Herrera, F., Chiclana, F., Luque, M.: Some issues on consistency of fuzzy preference relations. Eur. J. Oper. Res. 154, 98–109 (2004)
39. 39.
Herrera, F., Herrera-Viedma, E., Chiclana, F.: Multiperson decision making based on multiplicative preference relations. Eur. J. Oper. Res. 129, 372–385 (2001)
40. 40.
Herrera, F., Herrera-Viedma, E.: Choice functions and mechanisms for linguistic preference relations. Eur. J. Oper. Res. 120, 144–161 (2000)
41. 41.
Herrera-Viedma, E., Chiclana, F., Herrera, F., Alonso, S.: A group decision-making model with incomplete fuzzy preference relations based on additive consistency. IEEE Trans. Syst. Man Cybern. B 37, 176–189 (2007)
42. 42.
Herrera-Viedma, E., Alonso, S., Chiclana, F., Herrera, F.: A consensus model for group decision-making with incomplete fuzzy preference relations. IEEE Trans. Fuzzy Syst. 15(5), 863–877 (2007)
43. 43.
Hovanov, N.V., Kolari, J.W., Sokolov, M.V.: Deriving weights from general pairwise comparison matrices. Math. Soc. Sci. 55, 205–220 (2008)
44. 44.
International MCDM Society, website: http://www.mcdmsociety.org/
45. 45.
Kim, S.H, Choi, S.H, Kim, J.K.: An interactive procedure for multiple attribute group decision making with incomplete information: Range-based approach. Eur. J. Oper. Res. 118, 139–152 (1999)
46. 46.
Lee, H.-S.: A fuzzy method for evaluating suppliers. In: Wang, L. et al. (eds.) FSKD, LNAI 4223, pp. 1035–1043. Springer, Berlin (2006)Google Scholar
47. 47.
Lee, H.-S., Tseng, W.-K.: Goal programming methods for constructing additive consistency fuzzy preference relations. In: Gabrys, B. et al. (eds.) KES 2006, Part II, LNAI 4252, pp. 910–916. Springer, Berlin (2006)Google Scholar
48. 48.
Lee, H.-S., Yeh, C.-H.: Fuzzy multi-criteria decision making based on fuzzy preference relation. In: Lovrek, I. et al. (eds.) KES 2008, Part II, LNAI 5178, pp. 980–985. Springer, Berlin (2008)Google Scholar
49. 49.
Lee, H.-S., Shen, P.-D., Chyr, W.-L.: Prioritization of incomplete fuzzy preference relation. In: Lovrek, I. et al. (eds.) KES 2008, Part II, LNAI 5178, pp. 974–979. Springer, Berlin (2008)Google Scholar
50. 50.
Lin, C.C: A revised framework for deriving preference values from pairwise comparison matrices. Eur. J. Oper. Res. 176, 1145–1150 (2007)
51. 51.
Lipovetsky, S., Conklin, M.W.: Robust estimation of priorities in AHP. Eur. J. Oper. Res. 137, 110–122 (2002)
52. 52.
Ma, J. et al.: A method for repairing the inconsistency of fuzzy preference relations. Fuzzy Sets Syst. 157, 20–33 (2006)
53. 53.
Mikhailov, L.: A fuzzy programming method for deriving priorities in the analytic hierarchy process. J. Oper. Res. Soc. 5, 342–349 (2000)Google Scholar
54. 54.
Nishizawa, K.: Estimation of unknown comparisons in incomplete AHP and it’s compensation. In: Report of the Research Institute of Industrial Technology, Nihon University, vol 77 (2004)Google Scholar
55. 55.
Ramík, J., Vlach, M.: Measuring consistency and inconsistency of pair comparison systems. Kybernetika 49(3), 465–486 (2013)Google Scholar
56. 56.
Ramík, J.: Fuzzy preference matrix with missing elements and its application to ranking of alternatives. In: Proc. of the 31th International conference Mathematical Methods in Economics 2013, pp. 767–772, September 11–13, College of Polytechnics Jihlava, Jihlava (2013)Google Scholar
57. 57.
Ramík, J., Korviny, P.: Inconsistency of pairwise comparison matrix with fuzzy elements based on geometric mean. Fuzzy Sets Syst. 161, 1604–1613 (2010)
58. 58.
Ramík, J., Vlach, M.: Generalized Concavity in Optimization and Decision Making. Kluwer Publ., Boston-Dordrecht-London (2001)Google Scholar
59. 59.
Saaty, T.L.: The Analytic Hierarchy Process. McGraw-Hill, New York (1980)Google Scholar
60. 60.
Saaty, T.L.: Fundamentals of Decision Making and Priority Theory with the AHP. RWS Publications, Pittsburgh (1994)Google Scholar
61. 61.
Saaty, T.L., Vargas, L.: Models, Methods, Concepts and Applications of the Analytic Hierarchy Process. Kluwer, Boston (2000)Google Scholar
62. 62.
Saaty, T.L.: Decision-making with the AHP: Why is the principal eigenvector necessary. Eur. J. Oper. Res. 145, 85–91 (2003)
63. 63.
Shiraishi, S., Obata, T., Daigo, M.: Properties of a positive reciprocal matrix and their application to AHP. J. Oper. Res. Soc. Jpn 41(3), 404–414 (1998)Google Scholar
64. 64.
Srdjevic, B.: Combining different prioritization methods in the analytic hierarchy process synthesis. Comput. Oper. Res. 32, 1897–1919 (2005)
65. 65.
Switalski, Z.: General transitivity conditions for fuzzy reciprocal preference matrices. Fuzzy Sets Syst. 137, 85–100 (2003)
66. 66.
Tanino, T.: Fuzzy preference orderings in group decision making. Fuzzy Sets Syst. 12, 117–131 (1984)
67. 67.
Tanino, T.: Fuzzy preference relations in group decision making. In: Kacprzyk, J., Roubens, M. (eds.), Non-Conventional Preference Relations in Decision Making, pp. 54–71. Springer, Berlin (1988)
68. 68.
Thurstone, L.L.: A law of comparative judgment. Psychol. Rev. 34, 273–286 (1927)
69. 69.
Xu, Z.S.: On compatibility of interval fuzzy preference relations. Fuzzy Optim. Decis. Making 3, 217–225 (2004)
70. 70.
Xu, Z.S.: Goal programming models for obtaining the priority vector of incomplete fuzzy preference relation. Int. J. Approx. Reas. 36, 261–270 (2004)
71. 71.
Xu, Z.S., Da, Q.L.: A least deviation method to obtain a priority vector of a fuzzy preference relation. Eur. J. Oper. Res. 164, 206–216 (2005)
72. 72.
Xu, Z.S., Chen, J.: Some models for deriving the priority weights from interval fuzzy preference relations. Eur. J. Oper. Res. 184, 266–280 (2008)
73. 73.
Xu, Z.S.: A procedure for decision making based on incomplete fuzzy preference relation. Fuzzy Optim. Decis. Making 4, 175–189 (2005)
74. 74.
Xu, Z.S.: Multiple-attribute group decision making with different formats of preference information on attributes. IEEE Trans. Syst. Man Cybern. B 37, 1500–1511 (2007)
75. 75.
Xu, Z.S., Chen, J.: A subjective and objective integrated method for MAGDM problems with multiple types of exact preference formats. IDEAL, 145–154 (2007)Google Scholar
76. 76.
Xu, Z.S., Chen, J.: Group decision-making procedure based on incomplete reciprocal relations. Soft Comput. 12, 515–521 (2008)
77. 77.
Xu, Z.S., Chen, J.: MAGDM linear-programming models with distinct uncertain preference structures. IEEE Trans. Syst. Man Cybern. B 38, 1356–1370 (2008)
78. 78.
Yuen, K.K.F.: Pairwise opposite matrix and its cognitive prioritization operators: comparisons with pairwise reciprocal matrix and analytic prioritization operators. J. Oper. Res. Soc. 63, 322–338 (2012)
79. 79.
Wang, Y.-M., Fan, Z.-P.: Group decision analysis based on fuzzy preference relations: logarithmic and geometric least squares methods. Appl. Math. Comput. 194, 108–119 (2007)
80. 80.
Wang, Y.-M., Parkan, C.: Multiple attribute decision making based on fuzzy preference information on alternatives: ranking and weighting. Fuzzy Sets Syst. 153, 331–346 (2005)
81. 81.
Wang, Y.-M., Fan, Z.-P., Hua, Z.: A chi-square method for obtaining a priority vector from multiplicative and fuzzy preference relations. Eur. J. Oper. Res. 182, 356–366 (2007)