Advertisement

Preliminaries

Chapter
  • 1.6k Downloads
Part of the Lecture Notes in Economics and Mathematical Systems book series (LNE, volume 677)

Abstract

In this chapter basic preliminary concepts and results are presented which will be used in the following chapters: t-norms and t-conorms, fuzzy sets, fuzzy relations, fuzzy numbers, triangular fuzzy numbers, fuzzy matrices, abelian linearly ordered groups and others.

Keywords

Triangular Fuzzy Numbers Fuzzy Relation Fuzzy Sets Triangular Norms Fuzzy Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Bourbaki, N.: Algebra II. Springer, Heidelberg-New York-Berlin (1990)Google Scholar
  2. 2.
    Cavallo, B., D’Apuzzo, L.: A general unified framework for pairwise comparison matrices in multicriterial methods. Int. J. Intell. Syst. 24(4), 377–398 (2009)CrossRefGoogle Scholar
  3. 3.
    Cavallo, B., D’Apuzzo, L., Squillante, M.: About a consistency index for pairwise comparison matrices over a divisible alo-group. Int. J. Intell. Syst. 27, 153–175 (2012)CrossRefGoogle Scholar
  4. 4.
    Cavallo, B., D’Apuzzo, L.: Deriving weights from a pairwise comparison matrix over an alo/group. Soft Comput. 16, 353–366 (2012)CrossRefGoogle Scholar
  5. 5.
    Dubois, D. et al.: Fuzzy interval analysis. Fundamentals of Fuzzy Sets, Series on fuzzy sets, vol. 1. Kluwer Academic, Dordrecht-Boston-London (2000)Google Scholar
  6. 6.
    Frank, H.J.: On the simultaneous associativity of F(x, y) and \(x + y - F(x,y)\). Aequationes Math. 19, 194–226 (1979)Google Scholar
  7. 7.
    Klement, E.P., Mesiar, R., Pap, E.: Triangular Norms. Series Trends in Logic. Kluwer Academic, Dordrecht-Boston-London (2000)CrossRefGoogle Scholar
  8. 8.
    Kolesárová, A.: Triangular norm-based addition of fuzzy numbers. Tatra Mt. Math. Publ. 6, 75–81 (1995)Google Scholar
  9. 9.
    Menger, K.: Statistical metrics. Proc. Natl. Acad. Sci. USA 28, 535–537 (1942)CrossRefGoogle Scholar
  10. 10.
    Ralescu, D.: A survey of the representation of fuzzy concepts and its applications. In: Gupta, M.M., Regade, R.K., Yager, R. (eds.) Advances in Fuzzy Sets Theorey and Applications, pp. 77–91. North Holland, Amsterdam (1979)Google Scholar
  11. 11.
    Ramík, J., \(\check{\mathrm{R}}\)ímánek, J.: Inequality relation between fuzzy numbers and its use in fuzzy optimization. Fuzzy Sets Syst. 16, 123–138 (1985)Google Scholar
  12. 12.
    Ramík, J., Vlach, M.: Generalized Concavity in Optimization and Decision Making. Kluwer Publ., Boston-Dordrecht-London (2001)Google Scholar
  13. 13.
    Ramík, J.: Extension principle in fuzzy optimization. Fuzzy Sets Syst. 19, 29–37 (1986)CrossRefGoogle Scholar
  14. 14.
    Schweizer, B., Sklar, A.: Statistical metric spaces. Pacific J. Math. 10, 313–334 (1960)CrossRefGoogle Scholar
  15. 15.
    Yager, R.R.: On a general class of fuzzy connectives. Fuzzy Sets Syst. 4, 235–242 (1980)CrossRefGoogle Scholar
  16. 16.
    Zadeh, L.A.: Fuzzy sets. Inform. Contr 8, 338–353 (1965)CrossRefGoogle Scholar
  17. 17.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoning. Inform. Sci. Part I: 8, 199–249; Part II: 8, 301–357; Part III: 9, 43–80 (1975)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.University of Hradec KraloveHradec KraloveCzech Republic
  2. 2.Silesian University in OpavaKarvinaCzech Republic
  3. 3.Charles University in PraguePragueCzech Republic

Personalised recommendations