Skip to main content

Enzymatically Sensitive Fiber-Forming Bioresorbable Polymers

  • Chapter
  • First Online:
Resorbable Fiber-Forming Polymers for Biotextile Applications

Part of the book series: SpringerBriefs in Materials ((BRIEFSMATERIALS))

  • 775 Accesses

Abstract

This chapter reviews the fiber-forming resorbable polymers that are sensitive to degradation by enzymes. Mechanical properties, applications, and the mechanism of enzymatic degradation have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. L.S. Nair, C.T. Laurencin, Biodegradable polymers as biomaterials. Prog. Polym. Sci. 32(8–9), 762–798 (2007)

    Article  Google Scholar 

  2. T. Hayashi, Biodegradable polymers for biomedical uses. Prog. Polym. Sci. 19(4), 663–702 (1994)

    Article  Google Scholar 

  3. W.J. Bailey, Y. Okamoto, W.C. Kuo, T. Narita, in Proceedings of 3rd International Biodegradation Symposium, ed. by J.M. Sharpley, A.M. Kaplan (Applied Science Publishers, London, 1976), p. 765

    Google Scholar 

  4. B.D. Ulery, L.S. Nair, C.T. Laurencin, Biomedical applications of biodegradable polymers. J. Polym. Sci., Part B: Polym. Phys. 49(12), 832–864 (2011)

    Article  Google Scholar 

  5. T. Okada, T. Hayashi, Y. Ikada, Degradation of collagen suture in vitro and in vivo. Biomaterials 13(7), 448–454 (1992)

    Article  Google Scholar 

  6. I.V. Yannas, J.F. Burke, Design of an artificial skin. I. Basic design principles. J. Biomed. Mater. Res. 14(1), 65–81 (1980)

    Article  Google Scholar 

  7. R.J. Bellucci, D. Wolff, Experimental stapedectomy with collagen sponge implant. The Laryngoscope 74(5), 668–688 (1964)

    Article  Google Scholar 

  8. P.K. Narotam, S. José, N. Nathoo, C. Taylon, Y. Vora, Collagen matrix (DuraGen) in dural repair: analysis of a new modified technique. Spine 29(24), 2861–2867; discussion 2868–2869 (2004)

    Google Scholar 

  9. X. Duan, C. McLaughlin, M. Griffith, H. Sheardown, Biofunctionalization of collagen for improved biological response: scaffolds for corneal tissue engineering. Biomaterials 28(1), 78–88 (2007)

    Article  Google Scholar 

  10. Y.M. Bastiaansen-Jenniskens, W. Koevoet, A.C.W. de Bart, J.C. van der Linden, A.M. Zuurmond, H. Weinans, J.A.N. Verhaar, G.J.V.M. van Osch, J. Degroot, Contribution of collagen network features to functional properties of engineered cartilage. Osteoarthr. Cartil. 16(3), 359–366 (2008)

    Article  Google Scholar 

  11. S. Torres-Giner, J.V. Gimeno-Alcañiz, M.J. Ocio, J.M. Lagaron, Comparative performance of electrospun collagen nanofibers cross-linked by means of different methods. ACS Appl. Mater. Interfaces 1(1), 218–223 (2009)

    Article  Google Scholar 

  12. J.G. Cho-Hong, S. Sahoo, Development of hybrid polymer scaffolds for potential applications in ligament and tendon tissue engineering. Biomed. Mater. (Bristol, England) 2(3), 169–173 (2007)

    Article  Google Scholar 

  13. Y. Tanaka, H. Yamaoka, S. Nishizawa, S. Nagata, T. Ogasawara, Y. Asawa, Y. Fujihara, T. Takato, K. Hoshi, The optimization of porous polymeric scaffolds for chondrocyte/atelocollagen based tissue-engineered cartilage. Biomaterials 31(16), 4506–4516 (2010)

    Article  Google Scholar 

  14. C. Xu, W. Lu, S. Bian, J. Liang, Y. Fan, X. Zhang, Porous collagen scaffold reinforced with surfaced activated PLLA nanoparticles. Sci. World J. 2012 (2012)

    Google Scholar 

  15. Y. Tatekawa, N. Kawazoe, G. Chen, Y. Shirasaki, H. Komuro, M. Kaneko, Tracheal defect repair using a PLGA-collagen hybrid scaffold reinforced by a copolymer stent with bFGF-impregnated gelatin hydrogel. Pediatr. Surg. Int. 26(6), 575–580 (2010)

    Article  Google Scholar 

  16. K.A. Woodhouse, P. Klement, V. Chen, M.B. Gorbet, F.W. Keeley, R. Stahl, J.D. Fromstein, C.M. Bellingham, Investigation of recombinant human elastin polypeptides as non-thrombogenic coatings. Biomaterials 25(19), 4543–4553 (2004)

    Article  Google Scholar 

  17. S.M. Mithieux, J.E.J. Rasko, A.S. Weiss, Synthetic elastin hydrogels derived from massive elastic assemblies of self-organized human protein monomers. Biomaterials 25(20), 4921–4927 (2004)

    Article  Google Scholar 

  18. H. Betre, S.R. Ong, F. Guilak, A. Chilkoti, B. Fermor, L.A. Setton, Chondrocytic differentiation of human adipose-derived adult stem cells in elastin-like polypeptide. Biomaterials 27(1), 91–99 (2006)

    Article  Google Scholar 

  19. F. Lefebvre, F. Drouillet, A.M.S. de Larclause, M. Aprahamian, D. Midy, L. Bordenave, M. Rabaud, Repair of experimental arteriotomy in rabbit aorta using a new resorbable elastin—fibrin biomaterial. J. Biomed. Mater. Res. 23(12), 1423–1432 (1989)

    Article  Google Scholar 

  20. C. Barbié, C. Angibaud, T. Darnls, F. Lefebvre, M. Rabaud, M. Aprahamian, Some factors affecting properties of elastin-fibrin biomaterial. Biomaterials 10(7), 445–448 (1989)

    Article  Google Scholar 

  21. D. Collet, F. Lefebvre, C. Quentin, M. Rabaud, In vitro studies of elastin-fibrin biomaterial degradation: preservative effects of protease inhibitors and antibiotics. Biomaterials 12(8), 763–766 (1991)

    Article  Google Scholar 

  22. Y. Dror, T. Ziv, V. Makarov, H. Wolf, A. Admon, E. Zussman, Nanofibers made of globular proteins. Biomacromolecules 9(10), 2749–2754 (2008)

    Article  Google Scholar 

  23. B.H. Prinsen, M.G.M. de Sain-van der Velden, Albumin turnover: experimental approach and its application in health and renal diseases. Clinica. Chimica. Acta 347(1–2), 1–14 (2004)

    Google Scholar 

  24. V. Tuan Giam Chuang, U. Kragh-Hansen, M. Otagiri, Pharmaceutical strategies utilizing recombinant human serum albumin. Pharm. Res. 19(5), 569–577 (2002)

    Google Scholar 

  25. M. Uchida, A. Ito, K.S. Furukawa, K. Nakamura, Y. Onimura, A. Oyane, T. Ushida, T. Yamane, T. Tamaki, T. Tateishi, Reduced platelet adhesion to titanium metal coated with apatite, albumin-apatite composite or laminin-apatite composite. Biomaterials 26(34), 6924–6931 (2005)

    Article  Google Scholar 

  26. T. Shimokuri, T. Kaneko, M. Akashi, Specific thermosensitive volume change of biopolymer gels derived from propylated poly(γ-glutamate)s. J. Polym. Sci., Part A: Polym. Chem. 42(18), 4492–4501 (2004)

    Article  Google Scholar 

  27. G. Zhang, R. Zhang, X. Wen, L. Li, C. Li, Micelles based on biodegradable poly(L-glutamic acid)-b-Polylactide with paramagnetic Gd Ions chelated to the shell layer as a potential nanoscale MRI-visible delivery system. Biomacromolecules 9(1), 36–42 (2008)

    Article  Google Scholar 

  28. T. Miyamae, S. Mori, Y. Takeda, Filaments and surgical sutures of poly(L-glutamic acid) partly esterified with lower alkanols. 337106927-Feb-1968 (1968)

    Google Scholar 

  29. D.L. Kaplan, S. Fossey, C. Viney, W. Muller, Self-organization (assembly) in biosynthesis of silk fibers: a hierarchical problem, in Hierarchically Structured Materials, vol. 255, ed by I. A. Aksay, E. Baer, M. Sarikaya, D. Tirrell, Materials Res Symposium Proceedings, pp. 19–29 (1992)

    Google Scholar 

  30. G.H. Altman, F. Diaz, C. Jakuba, T. Calabro, R.L. Horan, J. Chen, H. Lu, J. Richmond, D.L. Kaplan, Silk-based biomaterials. Biomaterials 24(3), 401–416 (2003)

    Article  Google Scholar 

  31. J.C. DeLee, M.T. Smith, D.P. Green, The reaction of nerve tissue to various suture materials: a study in rabbits. J. Hand. Surg. Am. 2(1), 38–43 (1977)

    Article  Google Scholar 

  32. X. Yang, L. Wang, G. Guan, M.W. King, Y. Li, L. Peng, Y. Guan, X. Hu, Preparation and evaluation of bicomponent and homogeneous polyester silk small diameter arterial prostheses. J. Biomater. Appl. 28(5), 676–687 (2014)

    Article  Google Scholar 

  33. C. Allmeling, A. Jokuszies, K. Reimers, S. Kall, C.Y. Choi, G. Brandes, C. Kasper, T. Scheper, M. Guggenheim, P.M. Vogt, Spider silk fibres in artificial nerve constructs promote peripheral nerve regeneration. Cell Prolif. 41(3), 408–420 (2008)

    Article  Google Scholar 

  34. G.H. Altman, R.L. Horan, H.H. Lu, J. Moreau, I. Martin, J.C. Richmond, D.L. Kaplan, Silk matrix for tissue engineered anterior cruciate ligaments. Biomaterials 23(20), 4131–4141 (2002)

    Article  Google Scholar 

  35. Y. Cao, B. Wang, Biodegradation of silk biomaterials. Int. J. Mol. Sci. 10(4), 1514–1524 (2009)

    Article  Google Scholar 

  36. L. Benedetti, R. Cortivo, T. Berti, A. Berti, F. Pea, M. Mazzo, M. Moras, G. Abatangelo, Biocompatibility and biodegradation of different hyaluronan derivatives (Hyaff) implanted in rats. Biomaterials 14(15), 1154–1160 (1993)

    Article  Google Scholar 

  37. T. Avitabile, F. Marano, F. Castiglione, C. Bucolo, M. Cro, L. Ambrosio, C. Ferrauto, A. Reibaldi, Biocompatibility and biodegradation of intravitreal hyaluronan implants in rabbits. Biomaterials 22(3), 195–200 (2001)

    Article  Google Scholar 

  38. B. Zavan, V. Vindigni, S. Lepidi, I. Iacopetti, G. Avruscio, G. Abatangelo, R. Cortivo, Neoarteries grown in vivo using a tissue-engineered hyaluronan-based scaffold. FASEB J. 22(8), 2853–2861 (2008)

    Article  Google Scholar 

  39. V. Vindigni, R. Cortivo, L. Iacobellis, G. Abatangelo, B. Zavan, Hyaluronan benzyl ester as a scaffold for tissue engineering. Int. J. Mol. Sci. 10(7), 2972–2985 (2009)

    Article  Google Scholar 

  40. G. Pasquinelli, C. Orrico, L. Foroni, F. Bonafè, M. Carboni, C. Guarnieri, S. Raimondo, C. Penna, S. Geuna, P. Pagliaro, A. Freyrie, A. Stella, C.M. Caldarera, C. Muscari, Mesenchymal stem cell interaction with a non-woven hyaluronan-based scaffold suitable for tissue repair. J. Anat. 213(5), 520–530 (2008)

    Article  Google Scholar 

  41. B. Grigolo, G. Lisignoli, G. Desando, C. Cavallo, E. Marconi, M. Tschon, G. Giavaresi, M. Fini, R. Giardino, A. Facchini, Osteoarthritis treated with mesenchymal stem cells on hyaluronan-based scaffold in rabbit. Tissue Eng. Part C: Methods 15(4), 647–658 (2009)

    Article  Google Scholar 

  42. P.S. Chan, J.P. Caron, G.J.M. Rosa, M.W. Orth, Glucosamine and chondroitin sulfate regulate gene expression and synthesis of nitric oxide and prostaglandin E2 in articular cartilage explants. Osteoarthritis Cartilage 13(5), 387–394 (2005)

    Article  Google Scholar 

  43. P. Du Souich, A.G. García, J. Vergés, E. Montell, Immunomodulatory and anti-inflammatory effects of chondroitin sulphate. J. Cell Mol. Med. 13(8a), 1451–1463 (2009)

    Article  Google Scholar 

  44. C. Malavaki, S. Mizumoto, N. Karamanos, K. Sugahara, Recent advances in the structural study of functional chondroitin sulfate and dermatan sulfate in health and disease. Connect. Tissue Res. 49(3), 133–139 (2008)

    Article  Google Scholar 

  45. K.R. Kirker, Y. Luo, J.H. Nielson, J. Shelby, G.D. Prestwich, Glycosaminoglycan hydrogel films as bio-interactive dressings for wound healing. Biomaterials 23(17), 3661–3671 (2002)

    Article  Google Scholar 

  46. K. Kojima, Y. Okamoto, K. Kojima, K. Miyatake, H. Fujise, Y. Shigemasa, S. Minami, Effects of chitin and chitosan on collagen synthesis in wound healing. J. Vet. Med. Sci. 66(12), 1595–1598 (2004)

    Article  Google Scholar 

  47. B.-M. Min, S.W. Lee, J.N. Lim, Y. You, T.S. Lee, P.H. Kang, W.H. Park, Chitin and chitosan nanofibers: electrospinning of chitin and deacetylation of chitin nanofibers. Polymer 45(21), 7137–7142 (2004)

    Article  Google Scholar 

  48. H.K. Noh, S.W. Lee, J.-M. Kim, J.-E. Oh, K.-H. Kim, C.-P. Chung, S.-C. Choi, W.H. Park, B.-M. Min, Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts. Biomaterials 27(21), 3934–3944 (2006)

    Article  Google Scholar 

  49. C.K.S. Pillai, W. Paul, C.P. Sharma, Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog. Polym. Sci. 34(7), 641–678 (2009)

    Article  Google Scholar 

  50. T. Chandy, C.P. Sharma, Chitosan–as a biomaterial. Biomater. Artif. Cells Artif. Organs 18(1), 1–24 (1990)

    Google Scholar 

  51. R. Muzzarelli, G. Biagini, A. Pugnaloni, O. Filippini, V. Baldassarre, C. Castaldini, C. Rizzoli, Reconstruction of parodontal tissue with chitosan. Biomaterials 10(9), 598–603 (1989)

    Article  Google Scholar 

  52. G. Biagini, A. Bertani, R. Muzzarelli, A. Damadei, G. DiBenedetto, A. Belligolli, G. Riccotti, C. Zucchini, C. Rizzoli, Wound management with N-carboxybutyl chitosan. Biomaterials 12(3), 281–286 (1991)

    Article  Google Scholar 

  53. M.P. Ribeiro, A. Espiga, D. Silva, P. Baptista, J. Henriques, C. Ferreira, J.C. Silva, J.P. Borges, E. Pires, P. Chaves, I.J. Correia, Development of a new chitosan hydrogel for wound dressing. Wound Repair Regeneration 17(6), 817–824 (2009)

    Article  Google Scholar 

  54. M. Ignatova, N. Manolova, N. Markova, I. Rashkov, Electrospun non-woven nanofibrous hybrid mats based on chitosan and PLA for wound-dressing applications. Macromol. Biosci. 9(1), 102–111 (2009)

    Article  Google Scholar 

  55. L. Wu, H. Li, S. Li, X. Li, X. Yuan, X. Li, Y. Zhang, Composite fibrous membranes of PLGA and chitosan prepared by coelectrospinning and coaxial electrospinning. J. Biomed. Mater. Res., Part A 92A(2), 563–574 (2010)

    Google Scholar 

  56. B.-S. Liu, C.-H. Yao, S.-S. Fang, Evaluation of a non-woven fabric coated with a chitosan bi-layer composite for wound dressing. Macromol. Biosci. 8(5), 432–440 (2008)

    Article  Google Scholar 

  57. W. Wang, S. Itoh, K. Konno, T. Kikkawa, S. Ichinose, K. Sakai, T. Ohkuma, K. Watabe, Effects of Schwann cell alignment along the oriented electrospun chitosan nanofibers on nerve regeneration. J. Biomed. Mater. Res., Part A 91A(4), 994–1005 (2009)

    Article  Google Scholar 

  58. J.-Z. Wang, X.-B. Huang, J. Xiao, W.-T. Yu, W. Wang, W.-Y. Xie, Y. Zhang, X.-J. Ma, Hydro-spinning: a novel technology for making alginate/chitosan fibrous scaffold. J. Biomed. Mater. Res. A 93(3), 910–919 (2010)

    Google Scholar 

  59. D.F. Williams, S.P. Zhong, Biodeterioration/biodegradation of polymeric medical devices in situ. Int. Biodeterior. Biodegradation 34(2), 95–130 (1994)

    Article  Google Scholar 

  60. J.W. Coleman, Nitric oxide in immunity and inflammation. Int. Immunopharmacol. 1(8), 1397–1406 (2001)

    Article  Google Scholar 

  61. R.L. Reis, J.S. Román, Biodegradable Systems in Tissue Engineering and Regenerative Medicine (CRC Press, Boca Raton, 2004)

    Book  Google Scholar 

  62. R. Chandra, R. Rustgi, Biodegradable polymers. Prog. Polym. Sci. 23(7), 1273–1335 (1998)

    Article  Google Scholar 

  63. H. Tsuji, H. Muramatsu, Blends of aliphatic polyesters: V non-enzymatic and enzymatic hydrolysis of blends from hydrophobic poly(l-lactide) and hydrophilic poly(vinyl alcohol). Polym. Degrad. Stab. 71(3), 403–413 (2001)

    Article  Google Scholar 

  64. L. Liu, S. Li, H. Garreau, M. Vert, Selective enzymatic degradations of poly(l-lactide) and poly(ε-caprolactone) blend films. Biomacromolecules 1(3), 350–359 (2000)

    Article  Google Scholar 

  65. Z. Gan, Q. Liang, J. Zhang, X. Jing, Enzymatic degradation of poly(ε-caprolactone) film in phosphate buffer solution containing lipases. Polym. Degrad. Stab. 56(2), 209–213 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin W. King .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Gajjar, C.R., King, M.W. (2014). Enzymatically Sensitive Fiber-Forming Bioresorbable Polymers. In: Resorbable Fiber-Forming Polymers for Biotextile Applications. SpringerBriefs in Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-08305-6_6

Download citation

Publish with us

Policies and ethics