Skip to main content

On the Vulnerability of Low Entropy Masking Schemes

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 8419))

Abstract

Low Entropy Masking Schemes (LEMS) have been proposed to offer a reasonable tradeoff between the good protection against side-channel attacks offered by masking countermeasures and the high overhead that results from their implementation. Besides the limited analysis done in the original proposals of LEMS, their specific leakage characteristics have not yet been analyzed. This work explores the leakage behavior of these countermeasures and shows two different methods how the leakage can be exploited, even by generic univariate attacks. In particular, an attack that exploits specific properties of RSM for AES as well as a more generic attack making very little assumptions about the underlying LEMS are introduced. All attacks are practically verified by applying them to publicly available leakage samples of the RSM countermeasure.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The notation \(\mathcal {D}^{X=x}_{M=m_i}[\varLambda ]\) is of the same meaning of leakage distribution as \(\mathcal {D}[L(y_{m_i})]\). Both describe the leakage for processing \(y_{m_i}\). The former emphasizes leakage decomposition and the latter focuses on connecting with estimated sub-distributions.

  2. 2.

    An exception is when \((\hat{y})_\mathcal {M} \) is a permutation of \((y)_\mathcal {M}\) for some particular \(g\) and \(x\). Such exception occurs with small probability because the predicted leaking states take the range of entire \(\{0,1\}^n\) rather than \(\mathcal {M}\).

  3. 3.

    The same approach can be applied to arbitrary intermediate states, as long as they are a non-linear function of \(x\) and \(k\): For states \(y\) that are linear functions of \(x\) and \(k\), e.g. the s-box input, the key cancels out so that the knowntext pair become independent from the key, making the conversion into an attack infeasible.

References

  1. The dpa contest v4. http://www.dpacontest.org/v4/

  2. Bhasin, S., He, W., Guilley, S., Danger, J.-L.: Exploiting fpga block memories for protected cryptographic implementations. In: 2013 8th International Workshop on Reconfigurable and Communication-Centric Systems-on-Chip (ReCoSoC) (2013)

    Google Scholar 

  3. Brier, E., Clavier, C., Olivier, F.: Correlation power analysis with a leakage model. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 16–29. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. Coron, J.-S., Goubin, L.: On boolean and arithmetic masking against differential power analysis. In: Paar, C., Koç, Ç.K. (eds.) CHES 2000. LNCS, vol. 1965, pp. 231–237. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  5. Doget, J., Prouff, E., Rivain, M., Standaert, F.-X.: Univariate side channel attacks and leakage modeling. J. Crypt. Eng. 1, 123–144 (2011)

    Article  Google Scholar 

  6. Gierlichs, B., Batina, L., Tuyls, P., Preneel, B.: Mutual information analysis. In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 426–442. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  7. Golic, J., Tymen, C.: Multiplicative masking and power analysis of AES. In: Kaliski, B.S., Koç, Ç.K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  8. Kocher, P.C., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  9. Lemke-Rust, K., Paar, C.: Analyzing side channel leakage of masked implementations with stochastic methods. In: Biskup, J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 454–468. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Lemke-Rust, K., Paar, C.: Gaussian mixture models for higher-order side channel analysis. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 14–27. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  11. Moradi, A., Mischke, O., Eisenbarth, T.: Correlation-enhanced power analysis collision attack. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 125–139. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  12. Nassar, M., Guilley, S., Danger, J.-L.: Formal analysis of the entropy/security trade-off in first-order masking countermeasures against side-channel attacks. In: Bernstein, D.J., Chatterjee, S. (eds.) INDOCRYPT 2011. LNCS, vol. 7107, pp. 22–39. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Nassar, M., Souissi, Y., Guilley, S., Danger, J.-L.: RSM: a small and fast countermeasure for AES, secure against 1st and 2nd-order zero-offset scas. In: Design, Automation Test in Europe Conference Exhibition (DATE) (2012)

    Google Scholar 

  14. Oswald, E., Mangard, S.: Template attacks on masking—resistance is futile. In: Abe, M. (ed.) CT-RSA 2007. LNCS, vol. 4377, pp. 243–256. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Popp, T., Mangard, S.: Masked dual-rail pre-charge logic: DPA-resistance without routing constraints. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 172–186. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Prouff, E., Rivain, M.: A generic method for secure SBox implementation. In: Kim, S., Yung, M., Lee, H.-W. (eds.) WISA 2007. LNCS, vol. 4867, pp. 227–244. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Schaumont, P., Tiri, K.: Masking and dual-rail logic don’t add up. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 95–106. Springer, Heidelberg (2007)

    Google Scholar 

  18. Schindler, W., Lemke, K., Paar, C.: A stochastic model for differential side channel cryptanalysis. In: Rao, J.R., Sunar, B. (eds.) CHES 2005. LNCS, vol. 3659, pp. 30–46. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Schramm, K., Leander, G., Felke, P., Paar, C.: A collision-attack on AES. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 163–175. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Schramm, K., Paar, C.: Higher order masking of the AES. In: Pointcheval, D. (ed.) CT-RSA 2006. LNCS, vol. 3860, pp. 208–225. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Standaert, F.-X., Malkin, T.G., Yung, M.: A unified framework for the analysis of side-channel key recovery attacks. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 443–461. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  22. Veyrat-Charvillon, N., Standaert, F.-X.: Mutual information analysis: how, when and why? In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 429–443. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  23. Whitnall, C., Oswald, E., Mather, L.: An exploration of the Kolmogorov-Smirnov test as a competitor to mutual information analysis. In: Prouff, E. (ed.) CARDIS 2011. LNCS, vol. 7079, pp. 234–251. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

Download references

Acknowledgments

We would like to thank the reviewers for the helpful comments. This material is based upon work supported by the National Science Foundation under Grant No. 1261399.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Ye .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Ye, X., Eisenbarth, T. (2014). On the Vulnerability of Low Entropy Masking Schemes. In: Francillon, A., Rohatgi, P. (eds) Smart Card Research and Advanced Applications. CARDIS 2013. Lecture Notes in Computer Science(), vol 8419. Springer, Cham. https://doi.org/10.1007/978-3-319-08302-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08302-5_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08301-8

  • Online ISBN: 978-3-319-08302-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics