Skip to main content

Shear Waves Dispersion in Cylindrically Structured Cancellous Viscoelastic Bones

  • Conference paper
  • First Online:
Applied Non-Linear Dynamical Systems

Abstract

In this chapter we study anti-plane shear waves propagating through a cylindrically structured cancellous bone represented by a two-dimensional mesh of elastic trabeculae filled by a viscous marrow. In the long-wave limit, the original heterogeneous medium can be approximately substituted by a homogeneous one characterized by an effective complex shear modulus. The effect of dispersion is caused by the transmission of mechanical energy to heat due to the viscosity of the marrow (viscoelastic damping). We derive an approximate analytical solution using the asymptotic homogenization method; the cell problem is solved by means of a boundary shape perturbation and a lubrication theory approaches. For short waves, when the wavelength is comparable to the trabeculae size, the effect of dispersion is caused by successive reflections and refractions of local waves at the trabecula-marrow interfaces (Bloch dispersion). Decrease in the wavelength reveals a sequence of pass and stop frequency bands, so the heterogeneous bone can act like a discrete wave filter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrianov, I.V., Danishevs’kyy, V.V., Guillet, A., Pareige, P.: Effective properties and micro-mechanical response of filamentary composite wires under longitudinal shear. Eur. J. Mech. A/Solids 24, 195–206 (2005)

    Article  MATH  Google Scholar 

  2. Andrianov, I.V., Bolshakov, V.I., Danishevs’kyy, V.V., Weichert, D.: Higher-order asymptotic homogenization and wave propagation in periodic composite materials. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 464, 1181–1201 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andrianov, I.V., Bolshakov, V.I., Danishevs’kyy, V.V., Weichert, D.: Asymptotic study of imperfect interfaces in conduction through a granular composite material. Proc. Roy. Soc. A Math. Phys. Eng. Sci. 466, 2707–2725 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bakhvalov, N.S., Panasenko, G.P.: Homogenization: Averaging Processes in Periodic Media. Mathematical Problems in Mechanics of Composite Materials. Kluwer, Dordrecht (1989)

    Google Scholar 

  5. Brillouin, L.: Wave Propagation in Periodic Structures: Electric Filters and Crystal Lattices. Dover, New York (2003)

    Google Scholar 

  6. Bryant, J.D., David, T., Gaskell, P.H., King, S., Lond, G.: Rheology of bovine bone marrow. Proc. Inst. Mech. Eng. H J. Eng. Med. 203(2), 71–75 (1989)

    Article  Google Scholar 

  7. Cherkaev, E., Ou, M.-J.Y.: Dehomogenization: reconstruction of moments of the spectral measure of the composite. Inverse Probl. 24, 065008 (2008)

    Article  MathSciNet  Google Scholar 

  8. Christensen, R.M.: Mechanics of Composite Materials. Dover, Mineola (2005)

    Google Scholar 

  9. Frankel, N.A., Acrivos, A.: On the viscosity of a concentrated suspension of solid spheres. Chem. Eng. Sci. 22, 847–853 (1967)

    Article  Google Scholar 

  10. Gałka, A., Telega, J.J., Tokarzewski, S.: A contribution to evaluation of effective moduli of trabecular bone with rod-like microstructure. J. Theor. Appl. Mech. 37, 707–727 (1999)

    MATH  Google Scholar 

  11. Gałka, A., Telega, J.J., Tokarzewski, S.: Application of homogenization to evaluation of effective moduli of linear elastic trabecular bone with plate-like structure. Arch. Mech. 51, 335–355 (1999)

    MATH  Google Scholar 

  12. Gibson, J.L., Ashby, M.P.: Cellular Solids: Structure and Properties. Pergamon, Oxford (1988)

    MATH  Google Scholar 

  13. Guo, X.E.: Mechanical properties of cortical bone and cancellous bone tissue. In: Cowin, S.C. (ed.) Bone Mechanics Handbook, pp. 10-1–10-23. CRC, Boca Raton (2001)

    Google Scholar 

  14. Guz, A.N., Nemish, Y.N.: Perturbation of boundary shape in continuum mechanics. Soviet Appl. Mech. 23(9), 799–822 (1987)

    Article  MATH  Google Scholar 

  15. Hollister, S.J., Fyhire, D.P., Jepsen, K.J., Goldstein, S.A.: Application of homogenization theory to the study of trabecular bone mechanics. J. Biomech. 24, 825–839 (1991)

    Article  Google Scholar 

  16. Hughes, E.R., Leighton, T.G., Petley, G.M., White, P.R., Chivers, R.C.: Estimation of critical and viscous frequencies for Biot theory in cancellous bone. Ultrasonics 41, 365–368 (2003)

    Article  Google Scholar 

  17. Jee, W.S.S.: Integrated bone tissue physiology: anatomy and physiology. In: Cowin, S.C. (ed.) Bone Mechanics Handbook, pp. 1-1–1-68. CRC, Boca Raton (2001)

    Google Scholar 

  18. Jensen, J.S.: Phononic band gaps and vibrations in one- and two-dimensional mass-spring structures. J. Sound Vib. 266, 1053–1078 (2003)

    Article  Google Scholar 

  19. Kasra, M., Grynpas, M.D.: Static and dynamic finite element analyses of an idealized structural model of vertebral trabecular bone. J. Biomech. Eng. 120, 267–272 (1998)

    Article  Google Scholar 

  20. Kushwaha, M.S., Halevi, P., Martinez, G., Dobrzynski, L., Djafari-Rouhani, B.: Theory of acoustic band structure of periodic elastic composites. Phys. Rev. B 49, 2313–2322 (1994)

    Article  Google Scholar 

  21. Odgaard, A.: Qualification of cancellous bone architecture. In: Cowin, S.C. (ed.) Bone Mechanics Handbook, pp. 14-1–14-19. CRC, Boca Raton (2001)

    Google Scholar 

  22. Schraad, M.W.: On the macroscopic properties of discrete media with nearly periodic microstructures. Int. J. Solids Struct. 38, 7381–7407 (2001)

    Article  MATH  Google Scholar 

  23. Sigalas, M.M., Economou, E.N.: Elastic and acoustic wave band structure. J. Sound Vib. 158, 377–382 (1992)

    Article  Google Scholar 

  24. Thorp, O., Ruzzene, M., Baz, A.: Attenuation and localization of wave propagation in rods with periodic shunted piezoelectric patches. Smart Mater. Struct. 10, 979–989 (2001)

    Article  Google Scholar 

  25. Tokarzewski, S., Telega, J.J., Gałka, A.: Prediction of torsional rigidities of bone filled with marrow: the application of multipoint Padé approximants. Acta Bioeng. Biomech. 2, 560–566 (2000)

    Google Scholar 

  26. Van Rietbergen, B., Huiskes, R.: Elastic constants of cancellous bone. In: Cowin, S.C. (ed.) Bone Mechanics Handbook, pp. 15-1–15-24. CRC, Boca Raton (2001)

    Google Scholar 

  27. Williams, J.L., Lewis, J.L.: Properties and an anisotropic model of cancellous bone from the proximal tibial epiphysis. J. Biomech. Eng. 104(1), 50–56 (1982)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the Alexander von Humboldt Foundation (Institutional academic co-operation programme, grant no. 3.4-Fokoop-UKR/1070297), the German Research Foundation (Deutsche Forschungsgemeinschaft, grant no. WE 736/30-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Andrianov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Andrianov, I.V., Danishevs’kyy, V.V., Awrejcewicz, J. (2014). Shear Waves Dispersion in Cylindrically Structured Cancellous Viscoelastic Bones. In: Awrejcewicz, J. (eds) Applied Non-Linear Dynamical Systems. Springer Proceedings in Mathematics & Statistics, vol 93. Springer, Cham. https://doi.org/10.1007/978-3-319-08266-0_7

Download citation

Publish with us

Policies and ethics