Advertisement

Graph-Based Framework for Evaluating the Feasibility of Transition to Maintainomics

Chapter
Part of the Studies in Big Data book series (SBD, volume 8)

Abstract

Maintenance is a powerful support function for ensuring equipment productivity, availability and safety. Nowadays, growing concern for timeliness, accuracy and the ability to offer tracking information led to the augmentation of e-technologies’ applications within maintenance management, i.e., e-maintenance. However, like any other information and communication (ICT)-based operation, massive data sets (i.e., big data) are generated from videos, audios, images, search queries, historic records, sensors, etc. Inevitably, e-maintenance needs to consider how to extract useful value from those raw and/or fused data as an important aspect before it can be adopted in any industry. This book chapter presents an overview of the e-maintenance data challenge. The main contribution of the article is the application of graph-theoretic approach (GTA) to the problem of finding an improved insight in the factors that determine the feasibility of maintainomics, i.e., data-centric maintenance. With such a concept, the maintenance-services can be upgraded from the low level of operations to the higher levels of planning and decision making.

Keywords

e-Maintenance Maintainomics Graph-theoretic approach (GTA) Feasibility index of transition (FIT) Power plant Innovative computational intelligence 

References

  1. 1.
    Muller, A., Suhner, M.-C., Iung, B.: Maintenance alternative integration to prognosis process engineering. J. Qual. Maint. Eng. 13, 198–211 (2007)CrossRefGoogle Scholar
  2. 2.
    Kajko-Mattsson, M., Karim, R., Mirjamdotter, A.: Essential components of e-maintenance. Int. J. Perform. Eng. 7, 555–571 (2011)Google Scholar
  3. 3.
    Haider, A., Koronios, A.: e-prognostics: a step towards e-maintenance of engineering assets. J. Theor. Appl. Electron. Commer. Res. 1, 42–55 (2006)Google Scholar
  4. 4.
    Lee, J., Ni, J., Djurdjanovic, D., Qiu, H., Liao, H.: Intelligent prognostics tools and e-maintenance. Comput. Ind. 57, 476–489 (2006)CrossRefGoogle Scholar
  5. 5.
    Campos, J.: Development in the application of ICT in condition monitoring and maintenance. Comput. Ind. 60, 1–20 (2009)CrossRefGoogle Scholar
  6. 6.
    Jardine, A.K.S., Lin, D., Banjevic, D.: A review on machinery diagnostics and prognostics implementing condition-based maintenance. Mech. Syst. Signal Process. 20, 1483–1510 (2006)CrossRefGoogle Scholar
  7. 7.
    Niu, G., Yang, B.-S., Pecht, M.: Development of an optimized condition-based maintenance system by data fusion and reliability-centered maintenance. Reliab. Eng. Syst. Saf. 95, 786–796 (2010)CrossRefGoogle Scholar
  8. 8.
    Iung, B.: From remote maintenance to MAS-based e-maintenance of an industrial process. J. Intell. Manuf. 14, 59–82 (2003)CrossRefGoogle Scholar
  9. 9.
    Levrat, E., Iung, B., Marquez, A.C.: e-maintenance: a review and conceptual framework. Prod. Plann. Control 19, 408–429 (2008)CrossRefGoogle Scholar
  10. 10.
    Muller, A., Marquez, A.C., Iung, B.: On the concept of e-maintenance: review and current research. Reliab. Eng. Syst. Saf. 93, 1165–1187 (2008)CrossRefGoogle Scholar
  11. 11.
    Karim, R., Candell, O., Söderholm, P.: e-maintenance and information logistics: aspects of content format. J. Qual. Maint. Eng. 15, 308–324 (2009)CrossRefGoogle Scholar
  12. 12.
    Karim, R., Söderholm, P., Candell, O.: Development of ICT-based maintenance support services. J. Qual. Maint. Eng. 15, 127–150 (2009)CrossRefGoogle Scholar
  13. 13.
    Jantunen, E., Emmanouilidis, C., Arnaiz, A., Gilabert, E.: e-maintenance: trends, challenges and opportunities for modern industry. In: Proceedings of the 18th IFAC World Congress, pp. 453-458. Milano, Italy, 28 Aug–02 Sept 2011Google Scholar
  14. 14.
    Han, T., Yang, B.-S.: Development of an e-maintenance system integrating advanced techniques. Comput. Ind. 57, 569–580 (2006)CrossRefGoogle Scholar
  15. 15.
    Choi, J.-B., Yeum, S.-W., Ko, H.-O., Kim, Y.-J., Kim, H.-K., Choi, Y.-H., et al.: Development of a web-based aging monitoring system for an integrity evaluation of the major components in a nuclear power plant. Int. J. Press. Vessels Pip. 87, 33–40 (2010)CrossRefGoogle Scholar
  16. 16.
    Vo, C.C., Chilamkurti, N., Loke, S.W., Torabi, T.: Radio-Mama_an RFID based business process framework for asset management. J. Netw. Comput. Appl. 34, 990–997 (2011)CrossRefGoogle Scholar
  17. 17.
    Miertschin, K.W., Forrest, B.D.: Analysis of Tobyhanna army depot’s radio frequency identification (RFID) pilot program: RFID as an asset management tool. Master thesis, Naval Postgraduate School, Monterey, CA, USA, 2005Google Scholar
  18. 18.
    Mahakul, T.K., Baboo, S., Patnaik, S.: Implementation of enterprise asset management using IT tools: a case study of IB thermal power station. J. Inf. Technol. Manage. XVI, 39–67 (2005)Google Scholar
  19. 19.
    Briones, L., Bustamante, P., Serna, M.A.: Robicen: a wall-climbing pneumatic robot for inspection in nuclear power plants. Robot. Comput. Integr. Manuf. 11, 287–292 (1994)CrossRefGoogle Scholar
  20. 20.
    Balaguer, C., Gimenez, A., Jardon, A.: Climbing robots’ mobility for inspection and maintenance of 3D complex environments. Auton. Robots 18, 157–169 (2005)CrossRefGoogle Scholar
  21. 21.
    Luk, B.L., Cooke, D.S., Galt, S., Collie, A.A., Chen, S.: Intelligent legged climbing service robot for remote maintenance applications in hazardous environments. Robot. Auton. Syst. 53, 142–152 (2005)CrossRefGoogle Scholar
  22. 22.
    Wang, W., Wang, K., Zhang, H.: Crawling gait realization of the mini-modular climbing caterpillar robot. Prog. Nat. Sci. 19, 1821–1829 (2009)CrossRefGoogle Scholar
  23. 23.
    Lim, J., Park, H., An, J., Hong, Y.-S., Kim, B., Yi, B.-J.: One pneumatic line based inchworm-like micro robot for half-inch pipe inspection. Mechatronics 18, 315–322 (2008)CrossRefGoogle Scholar
  24. 24.
    Neubauer, W.: A spider-like robot that climbs vertically in ducts or pipes. In: Presented at the Proceedings of IEEE/RSJ International Conference on Intelligent Robotics and Systems, pp. 1178-1185, 1994Google Scholar
  25. 25.
    Prasad, E.N., Kannan, M., Azarudeen, A., Karuppasamy, N.: Defect identification in pipe lines using pipe inspection robot. Int. J. Mech. Eng. Robot. Res. 1, 20–31 (2012)Google Scholar
  26. 26.
    Hu, Z., Appleton, E.: Dynamic characteristics of a novel self-drive pipeline pig. IEEE Trans. Rob. 21, 781–789 (2005)CrossRefGoogle Scholar
  27. 27.
    Schmidt, D., Berns, K.: Climbing robots for maintenance and inspections of vertical structures—a survey of design aspects and technologies. Robot. Auton. Syst. 61, 1288–1305 (2013)CrossRefGoogle Scholar
  28. 28.
    Roslin, N.S., Anuar, A., Jalal, M.F.A., Sahari, K.S.M.: A review: hybrid locomotion of in-pipe inspection robot. Proc. Eng. 41, 1456–1462 (2012)CrossRefGoogle Scholar
  29. 29.
    Manyika, J., Chui, M., Brown, B., Bughin, J., Dobbs, R., Roxburgh, C., et al.: Big Data: The Next Frontier for Innovation, Competition, and Productivity. McKinsey Global Institute, Washington (2011)Google Scholar
  30. 30.
    O’Driscoll, A., Daugelaite, J., Sleator, R.D.: ‘Big data’, Hadoop and cloud computing in genomics. J. Biomed. Inform. 46, 774–781 (2013)CrossRefGoogle Scholar
  31. 31.
    Chang, R.M., Kauffman, R.J., Kwon, Y.: Understanding the paradigm shift to computational social science in the presence of big data. Decis. Support Syst. 63, 67–80 (2014)Google Scholar
  32. 32.
    Wu, X., Zhu, X., Wu, G.-Q., Ding, W.: Data mining with big data. IEEE Trans. Knowl. Data Eng. 26, 97–107 (2014)Google Scholar
  33. 33.
    Dai, J., Huang, J., Huang, S., Liu, Y., Sun, Y.: The Hadoop stack: new paradigm for big data storage and processing. Int. Technol. J. 16, 92–110 (2012)Google Scholar
  34. 34.
    Sagiroglu, S., Sinanc, D.: Big data: a review. In: Presented at the 2013 International Conference on Collaboration Technologies and Systems (CTS), pp. 42-47, 2013Google Scholar
  35. 35.
    Nieva, T., Wegmann, A.: A conceptual model for remote data acquisition systems. Comput. Ind. 47, 215–237 (2002)CrossRefGoogle Scholar
  36. 36.
    Kans, M., Ingwald, A.: Common database for cost-effective improvement of maintenance performance. Int. J. Prod. Econ. 113, 734–747 (2008)CrossRefGoogle Scholar
  37. 37.
    Pistofidis, P., Emmanouilidis, C., Koulamas, C., Karampatzakis, D., Papathanassiou, N.: A layered e-maintenance architecture power by smart wireless monitoring components. In: Proceedings of the 2012 International Conference on Industrial Technology (ICIT), pp. 1-6, 2012Google Scholar
  38. 38.
    Iung, B., Marquez, A.C.: Special issue on e-maintenance. Comput. Ind. 57, 473–475 (2006)CrossRefGoogle Scholar
  39. 39.
    Iung, B., Levrat, E., Marquez, A.C., Erbe, H.: Conceptual framework for e-maintenance: illustration by e-maintenance technologies and platforms. Ann. Rev. Control 33, 220–229 (2009)CrossRefGoogle Scholar
  40. 40.
    Yao, Y.: A spectrum decision support system for cognitive radio networks. Licentiate Thesis, School of Computing, Blekinge Institute of Technology, Karlskrona, Sweden, 2012Google Scholar
  41. 41.
    Marais, K.B., Saleh, J.H.: Beyond its cost, the value of maintenance: an analytical framework for capturing its net present value. Reliab. Eng. Syst. Saf. 94, 644–657 (2009)CrossRefGoogle Scholar
  42. 42.
    Kalafatas, G.: A graph theoretic modeling framework for generalized transportation systems with congestion phenomena. PhD thesis, Purdue University, West Lafayette, Indiana, 2010Google Scholar
  43. 43.
    Thakkar, J., Kanda, A., Deshmukh, S.G.: Evaluation of buyer-supplier relationships using an integrated mathematical approach of interpretive structural modeling (ISM) and graph theoretic matrix: the case study of Indian automotive SMEs. J. Manuf. Technol. Manage. 19, 92–124 (2008)CrossRefGoogle Scholar
  44. 44.
    Franceschet, M., Gubiani, D., Montanari, A., Piazza, C.: A graph-theoretic approach to map conceptual designs to XML schemas. ACM Trans Database Syst 38, 6:1–6:44 (2013)CrossRefMathSciNetGoogle Scholar
  45. 45.
    Sabharwal, S., Garg, S.: Determining cost effectiveness index of remanufacturing: a graph theoretic approach. Int. J. Prod. Econ. 144, 521–532 (2013)CrossRefGoogle Scholar
  46. 46.
    Hou, F., Shen, W.-M.: Graph-based optimal reconfiguration planning for self-reconfigurable robots. Robot. Auton. Syst. 62, 1047–1059 (2014)Google Scholar
  47. 47.
    Pishvaee, M.S., Rabbani, M.: A graph theoretic-based heuristic algorithm for responsive supply chain network design with direct and indirect shipment. Adv. Eng. Softw. 42, 57–63 (2011)CrossRefzbMATHGoogle Scholar
  48. 48.
    Even, S., Even, G.: Graph Algorithms, 2nd edn. Cambridge University Press, New York (2012). ISBN 978-0-521-51718-8zbMATHGoogle Scholar
  49. 49.
    Mesbahi, M., Egerstedt, M.: Graph Theoretic Methods in Multiagent Networks. Princeton University Press, Princeton (2010). ISBN 978-0-691-14061-2zbMATHGoogle Scholar
  50. 50.
    Kreyszig, E., Kreyszig, H., Norminton, E.J.: Advanced Engineering Mathematics, 10th edn. Wiley, Hoboken (2011). ISBN 978-0-470-45836-5zbMATHGoogle Scholar
  51. 51.
    Raj, T., Shankar, R., Suhaib, M.: GTA-based framework for evaluating the feasibility of transition to FMS. J. Manuf. Technol. Manage. 21, 160–187 (2010)CrossRefGoogle Scholar
  52. 52.
    Johnson, J.E.: Big data + big analytics = big opportunity. Financ. Executive 28, 50–53 (2012)Google Scholar
  53. 53.
    Brynjolffson, E., Hammerbacher, J., Stevens, B.: Competing Through Data: Three Experts Offer Their Game Plans. McKinsey Global Institute, Washington (2011)Google Scholar
  54. 54.
    Buhl, H.U., Röglinger, M., Moser, F., Heidemann, J.: Big data: a fashionable topic with(out) sustainable relevance for research and practice? Bus. Inf. Syst. Eng. 2, 65–69 (2013)CrossRefGoogle Scholar
  55. 55.
    Jackson, R.A.: Big data big risk. Internal Auditor 70, 34–38 (2013)Google Scholar
  56. 56.
    Big data needn’t be a big headache: how to tackle mind-blowing amounts of information. Strateg. Dir. 28, 22–24 (2012)Google Scholar
  57. 57.
    Alstyne, M.V., Brynjolfsson, E., Madnick, S.: Why not one big database: principles for data ownership. Decis. Support Syst. 15, 267–284 (1995)CrossRefGoogle Scholar
  58. 58.
    Chen, H., Chiang, R.H.L., Storey, V.C.: Business intelligence and analytics: from big data to big impact. MIS Q. 36, 1165–1188 (2012)Google Scholar
  59. 59.
    Watson, J.: Big Data and Consumer Products Companies: People, Processes and Culture Barriers. The Economist Intelligence Unit Limited, London, New York, Hong Kong, Geneva (2013)Google Scholar
  60. 60.
    Emmanouilidis, C., Jantunen, E., Gilabert, E., Arnaiz, A., Starr, A.: e-maintenance update: the road to success for modern industry. In: Proceedings of the 24th International Congress on Condition Monitoring and Diagnostics Engineering Management, pp. 1–10. Stavanger, Norway, ISBN 0-9541307-2-3, 2011Google Scholar
  61. 61.
    Computer_Weekly. (2013) Big data storage choices. Computer Weekly 1–3Google Scholar
  62. 62.
    Huang, Y.-S., Duy, D., Fang, C.-C.: Efficient maintenance of basic statistical functions in data warehouses. Decis. Support Syst. 57, 94–104 (2014)CrossRefGoogle Scholar
  63. 63.
    Xu, X.-B., Yang, Z.-Q., Xiu, J.-P., Liu, C.: A big data acquisition engine based on rule engine. J. China Univ. Posts Telecommun. 20, 45–49 (2013)CrossRefGoogle Scholar
  64. 64.
    Urbani, J., Kotoulas, S., Maassen, J., Harmelen, F.V., Bal, H.: WebPIE: a Web-scale parallel inference engine using MapReduce. Web Semant.: Sci. Serv. Agents World Wide Web 10, 59–75 (2012)CrossRefGoogle Scholar
  65. 65.
    Candell, O., Karim, R., Parida, A.: Development of information system for e-maintenance solutions within the aerospace industry. Int. J. Perform. Eng. 7, 583–592 (2011)Google Scholar
  66. 66.
    Chebel-Morello, B., Medjaher, K., Arab, A.H., Bandou, F., Bouchaib, S., Zerhouni, N.: e-maintenance for photovoltaic power generation system. Energy Proc. 18, 640–643 (2012)CrossRefGoogle Scholar
  67. 67.
    Hung, M.-H., Chen, K.-Y., Ho, R.-W., Cheng, F.-T.: Development of an e-diagnostics/maintenance framework for semiconductor factories with security considerations. Adv. Eng. Inform. 17, 165–178 (2003)CrossRefGoogle Scholar
  68. 68.
    Yu, R., Iung, B., Panetto, H.: A multi-agents based e-maintenance system with case-based reasoning decision support. Eng. Appl. Artif. Intell. 16, 321–333 (2003)CrossRefGoogle Scholar
  69. 69.
    Katal, A., Wazid, M., Goudar, R.H.: Big data: issues, challenges, tools and good practices. In: Presented at the 2013 Sixth International Conference on Contemporary Computing (IC3), pp. 404–409, 2013Google Scholar
  70. 70.
    Gobble, M.M.: Big data: the next big thing in innovation. Res. Technol. Manage. 56, 64–66 (2013)Google Scholar
  71. 71.
    Hausladen, I., Bechheim, C.: e-maintenance platform as a basis for business process integration. In: Proceedings of the 2nd IEEE International Conference on Industrial Informatics (INDIN), pp. 46–51, 2004Google Scholar
  72. 72.
    Crowe, J., Candlish, J.R.: Data analytics: the next big thing in information. Grey J. 9, 157–159 (2013)Google Scholar
  73. 73.
    Lee, J., Lapira, E., Bagheri, B., Kao, H.-A.: Recent advances and trends in predictive manufacturing systems in big data environment. Manuf. Lett. 1, 38–41 (2013)CrossRefGoogle Scholar
  74. 74.
    Pedrycz, W.: Granular Computing: Analysis and Design of Intelligent Systems. CRC Press, Boca Raton (2013). ISBN 978-1439886816CrossRefGoogle Scholar
  75. 75.
    Yam, R.C.M., Tse, P.W., Li, L., Tu, P.: Intelligent predictive decision support system for condition-based maintenance. Int. J. Adv. Manuf. Technol. 17, 383–391 (2001)CrossRefGoogle Scholar
  76. 76.
    Cumbley, R., Church, P.: Is “Big Data” creepy. Comput. Law Secur. Rep. 29, 601–609 (2013)CrossRefGoogle Scholar
  77. 77.
    Bloss, R.: By air, land and sea, the unmanned vehicles are coming. Ind. Robot 34, 12–16 (2007)CrossRefGoogle Scholar
  78. 78.
    Pagnano, A., Höpf, M., Teti, R.: A roadmap for automated power line inspection. Maintenance and repair. Proc. CIRP 12, 234–239 (2013)CrossRefGoogle Scholar
  79. 79.
    Jones, D.I., Earp, G.K.: Camera sightline pointing requirements for aerial inspection of overhead power lines. Electr. Power Syst. Res. 57, 73–82 (2001)CrossRefGoogle Scholar
  80. 80.
    Wan, S., Bian, X., Chen, L., Yu, D., Wang, L., Guan, Z.: Electrostatic discharge effect on safe distance determination for 500 kV ac power line’s helicopter inspection. J. Electrostat. 71, 778–780 (2013)CrossRefGoogle Scholar
  81. 81.
    Jones, D.I., Whitworth, C.C., Earp, G.K., Duller, A.W.G.: A laboratory test-bed for an automated power line inspection system. Control Eng. Pract. 13, 835–851 (2005)CrossRefGoogle Scholar
  82. 82.
    Foong, W.K.: Ant colony optimization for power plant maintenance scheduling. Unpublished doctoral thesis, School of Civil and Environmental Engineering, University of Adelaide, 2007Google Scholar
  83. 83.
    Foong, W.K., Maier, H.R., Simpson, A.R.: Power plant maintenance scheduling using ant colony optimization. In: Chan, F.T.S., Tiwari, M.K. (eds.) Swarm Intelligence, Focus on Ant and Particle Swarm Optimization. Chapter 6, pp. 289–320. InTech, Vienna (2007). ISBN 978-3-902613-09-7Google Scholar
  84. 84.
    Foong, W.K., Simpson, A.R., Maier, H.R., Stolp, S.: Ant colony optimization for power plant maintenance scheduling optimization—a five-station hydropower system. Ann. Oper. Res. 159, 433–450 (2008)CrossRefzbMATHGoogle Scholar
  85. 85.
    Mohanta, D.K., Sadhu, P.K., Chakrabarti, R.: Deterministic and stochastic approach for safety and reliability optimization of captive power plant maintenance scheduling using GA/SA-based hybrid techniques. Reliab. Eng. Syst. Saf. 92, 187–199 (2007)CrossRefGoogle Scholar
  86. 86.
    Netland, Y., Skavhaug, A.: Two pilot experiments on the feasibility of telerobotic inspection of offshore wind turbines. Presented at the 2nd Mediterranean Conference on Embedded Computing (MECD—2013, ECyPS’2013), Budva, Montenegro, pp. 1–4, 2013Google Scholar
  87. 87.
    Pan, M.-C., Li, P.-C., Cheng, Y.-R.: Remote online machine condition monitoring system. Measurement 41, 912–921 (2008)CrossRefGoogle Scholar
  88. 88.
    Das, J.D., S. Chowdhuri, J. Bera, and G. Sarkar, “Remote monitoring of different electrical parameters of multi-machine system using PC,” Measurement, vol. 45, pp. 118-125, 2012Google Scholar
  89. 89.
    Mendoza-Jasso, J., Ornelas-Vargas, G., Castañeda-Miranda, R., Ventura-Ramos, E., Zepeda-Garrido, A., Herrera-Ruiz, G.: FPGA-based real-time remote monitoring system. Comput. Electron. Agric. 49, 272–286 (2005)CrossRefGoogle Scholar
  90. 90.
    Jonsson, K., Holmström, J., Levén, P.: Organizational dimensions of e-maintenance: a multi-contextual perspective. Int. J. Syst. Assur. Eng. Manage. 1, 210–218 (2010)CrossRefGoogle Scholar
  91. 91.
    Witten, I.H., Frank, E., Hall, M.A.: Data mining: practical machine learning tools and techniques, 3rd edn. Morgan Kaufmann, Elsevier Inc., Burlington (2011)Google Scholar
  92. 92.
    Xing, B., Gao, W.-J.: Innovative computational intelligence: a rough guide to 134 clever algorithms. Springer International Publishing Switzerland, Cham, Heidelberg, New York, Dordrecht, London, ISBN 978-3-319-03403-4 (2014)Google Scholar
  93. 93.
    Dai, J., Huang, J., Huang, S., Liu, Y., Sun, Y.: The Hadoop stack: new paradigm for big data storage and processing. Int. Technol. J. 16, 92–110 (2012)Google Scholar
  94. 94.
    Patel, A.B., Birla, M., Nair, U.: Addressing big data problem using Hadoop and map reduce. In: Proceedings of 2012 Nirma University International Conference on Engineering (NUiCONE), pp. 1–5, 06–08 Dec 2012Google Scholar
  95. 95.
    Qiu, Z., Lin, Z.-W., Ma, Y.: Research of Hadoop-based data flow management system. J. China Univ. Posts Telecommun. 18, 164–168 (2011)CrossRefGoogle Scholar
  96. 96.
    Edwards, M., Rambani, A., Zhu, Y., Musavi, M.: Design of Hadoop-based framework for analytics of large synchrophasor datasets. Procedia Computer Science 12, 254–258 (2012)CrossRefGoogle Scholar
  97. 97.
    ElSheikh, G., ElNainay, M.Y., ElShehaby, S., Abougabal, M.S.: SODIM: service oriented data integration based on MapReduce. Alexandria Eng. J. 52, 313–318 (2013)CrossRefGoogle Scholar
  98. 98.
    Kolberg, W., Marcos, P.D.B., Anjos, J.C.S., Miyazaki, A.K.S., Geyer, C.R., Arantes, L.B.: MRSG—a MapReduce simulator over SimGrid. Parallel Comput. 39, 233–244 (2013)CrossRefGoogle Scholar
  99. 99.
    Ko, C.-H.: RFID-based building maintenance system. Autom. Constr. 18, 275–284 (2009)CrossRefGoogle Scholar
  100. 100.
    Osman, M.S., Ram, B., Stanfield, P., Samanlioglu, F., Davis, L., Bhadury, J.: Radio frequency identification system optimisation models for lifecycle of a durable product. Int. J. Prod. Res. 48, 2699–2721 (2010)CrossRefzbMATHGoogle Scholar
  101. 101.
    Xing, B., Gao, W.-J., Marwala, T.: The applications of computational intelligence in radio frequency identification research. In: IEEE International Conference on Systems, Man, and Cybernetics (IEEE SMC), pp. 2067–2072. Seoul, Korea, 14–17 Oct 2012Google Scholar
  102. 102.
    MacDonald, I.: Smart wireless provides a sound basis for improved performance. Mod. Power Syst. 20–22 (2012)Google Scholar
  103. 103.
    Herzog, M.A.: Machine and component residual life estimation through the application of neural networks. Master thesis, Department of Mechanical and Aeronautical Engineering, Faculty of Engineering, University of Pretoria, Pretoria, South Africa, 2006Google Scholar
  104. 104.
    Herzog, M.A., Marwala, T., Heyns, P.S.: Machine and component residual life estimation through the application of neural networks. Reliab. Eng. Syst. Saf. 94, 479–489 (2009)CrossRefGoogle Scholar
  105. 105.
    Marwala, T.: Fault identification using neural networks and vibration data. Unpublished doctoral thesis, St. John’s College, University of Cambridge, 2000Google Scholar
  106. 106.
    Xing, B., Gao, W.-J.: Computational Intelligence in Remanufacturing. IGI Global, Hershey (2014). ISBN 978-1-4666-4908-8Google Scholar
  107. 107.
    Gao, W.-J., Xing, B., Marwala, T.: Teaching—learning-based optimization approach for enhancing remanufacturability pre-evaluation system’s reliability. In: IEEE Symposium Series on Computational Intelligence (IEEE SSCI), pp. 235-239. Singapore, 15–19 Apr 2013Google Scholar
  108. 108.
    Whelan, C.: Big data and the democratisation of decisions. The Economist Intelligence Unit Limited, London, New York, Hong Kong, Geneva (2012)Google Scholar
  109. 109.
    Onohaebi, O.S., Lawai, V.O.: Poor maintenance culture; the bane to electric power generation in Nigeria. J. Econ. Eng. 28–33 (2010)Google Scholar
  110. 110.
    Manoochehri, M.: Data just right: introduction to large-scale data and analytics. Pearson Education Inc, Upper Saddle River (2014). ISBN 978-0-321-89865-4Google Scholar
  111. 111.
    Pride, W.M., Hughes, R.J., Kapoor, J.R.: Business, 12th edn. South-Western, Cengage Learning, Mason (2014). 2014Google Scholar
  112. 112.
    Brown, B., Chui, M., Manyika, J.: Are you ready for the era of ‘big data’?. McKinsey Global Institute, New York (2011)Google Scholar
  113. 113.
    Al-Qahtani, M.S., Aramco, S.: Information and communication technology infrastructure in e-maintenance. In: Proceedings of the Fourth International Conference on Information, Process, and Knowledge Management, ISBN 978-1-61208-181-6, pp. 7–11, 2012Google Scholar
  114. 114.
    Anandhakumar, R., Subramanian, S., Ganesan, S.: Modified ABC algorithm for generator maintenance scheduling. Int. J. Comput. Electr. Eng. 3, 812–819 (2011)CrossRefGoogle Scholar
  115. 115.
    Moghaddam, K.S., Usher, J.S.: Preventive maintenance and replacement scheduling for repairable and maintainable systems using dynamic programming. Comput. Ind. Eng. 60, 654–665 (2011)CrossRefGoogle Scholar
  116. 116.
    Wang, Y., Handschin, E.: A new genetic algorithm for preventive unit maintenance scheduling of power systems. Electr. Power Energy Syst. 22, 343–348 (2000)CrossRefGoogle Scholar
  117. 117.
    Saraiva, J.T., Pereira, M.L., Mendes, V.T., Sousa, J.C.: A simulated annealing based approach to solve the generator maintenance scheduling problem. Electr. Power Syst. Res. 81, 1283–1291 (2011)CrossRefGoogle Scholar
  118. 118.
    Yare, Y., Venayagamoorthy, G.K.: Optimal maintenance scheduling of generators using multiple swarms-MDPSO framework. Eng. Appl. Artif. Intell. 23, 895–910 (2010)CrossRefGoogle Scholar
  119. 119.
    Breton, S.P., Moe, G.: Status, plans and technologies for offshore wind turbines in Europe and North America. Renew. Energy 34, 646–654 (2009)CrossRefGoogle Scholar
  120. 120.
    Akdag, S.A., Dinler, A.: A new method to estimate weibull parameters for wind energy applications. Energy Convers. Manag. 50, 1761–1766 (2009)CrossRefGoogle Scholar
  121. 121.
    Irfan, U., Qamar-uz-Zaman, C., Andrew, J.C.: An evaluation of wind energy potential at Kati Bandar, Pakistan. Renew. Sustain. Energy Rev. 14, 856–861 (2010)CrossRefGoogle Scholar
  122. 122.
    Esteban, M.D., Diez, J.J., Lpez, J.S., Negro, V.: Why offshore wind energy? Renew. Energy 36, 444–450 (2011)CrossRefGoogle Scholar
  123. 123.
    Nguyen, T.H., Prinz, A., Friisø, T., Nossum, R., Tyapin, I.: A framework for data integration of offshore wind farms. Renew. Energy 60, 150–161 (2013)CrossRefGoogle Scholar
  124. 124.
    Hameed, Z., Vatn, J., Heggset, J.: Challenges in the reliability and maintainability data collection for offshore wind turbines. Renew. Energy 36, 2154–2165 (2011)CrossRefGoogle Scholar
  125. 125.
    Sunitha, M.S.: Studies on fuzzy graphs. Doctoral thesis, Department of Mathematics, Faculty of Science, Cochin University of Science and Technology, Cochin, 2001Google Scholar

Copyright information

© Springer International Publishing Switzerland 2015

Authors and Affiliations

  1. 1.Center for Asset Integrity Management (C-AIM), Department of Mechanical and Aeronautical Engineering, Faculty of Engineering, Built Environment and Information TechnologyUniversity of PretoriaPretoriaSouth Africa

Personalised recommendations