Skip to main content

Renewable Energy

  • 1893 Accesses


This chapter describes the basic processes of the major renewable energy technologies. A brief outline of the historical development of renewable energy is first presented. Later, the working principles and the economics of wind energy, solar energy, hydro power, bioenergies will be described, followed by a review of other renewable technologies which have not reached maturity as of today. Finally, a discussion on the means available for carrying and storing energy is provided at the end of this chapter.


  • Solar power
  • Wind power
  • Hydropower
  • Biomass
  • Energy storage carriers

This is a preview of subscription content, access via your institution.

Buying options

USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-3-319-08225-7_4
  • Chapter length: 64 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
USD   59.99
Price excludes VAT (USA)
  • ISBN: 978-3-319-08225-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Hardcover Book
USD   84.99
Price excludes VAT (USA)
Fig. 4.1
Fig. 4.2
Fig. 4.3
Fig. 4.4
Fig. 4.5
Fig. 4.6
Fig. 4.7
Fig. 4.8
Fig. 4.9
Fig. 4.10
Fig. 4.11
Fig. 4.12
Fig. 4.13
Fig. 4.14
Fig. 4.15
Fig. 4.16
Fig. 4.17
Fig. 4.18
Fig. 4.19
Fig. 4.20
Fig. 4.21
Fig. 4.22
Fig. 4.23
Fig. 4.24
Fig. 4.25
Fig. 4.26
Fig. 4.27
Fig. 4.28
Fig. 4.29
Fig. 4.30
Fig. 4.31
Fig. 4.32
Fig. 4.33
Fig. 4.34
Fig. 4.35
Fig. 4.36
Fig. 4.37
Fig. 4.38


  1. 1.

    Solar energy is nothing but an end product of nuclear fusion taking place on the sun.

  2. 2.

    The Solarpark in Mühlhausen in Bavararia is expected to produce at 5 W/m\(^2\).

  3. 3.

    Could you imagine a wind turbine of 1 km in height with almost the same length of rotor blades?

  4. 4.

    85 % plant availability is assumed for coal-fired power plants and 30 % capacity factor for wind power.

  5. 5.

    The sugar or the vegetable oils found in these feedstocks can easily be extracted with existing technologies.

  6. 6.

    For instance, government intervention in the biofuel market can render possible the fact that the price of biofuels rises faster than the price of energy.

  7. 7.

    Waste from the paper industry.

  8. 8.

    The derivation is in fact incorrect. Waves also carry kinetic energy, and in addition the relationship between (group) velocity and wavelength needs to be modified. In this particular case the modifications “cancel” and one is left with our present simple formula.

  9. 9.

    Magnetic induction means that an electric current is induced by a time varying magnetic field.

  10. 10.

    The explosive range is the proportions of combustible vapor mixed with air which leads to an explosion if ignited.


  • Archer, C.L., Jacobson, M.Z.: Evaluation of global wind power. J. Geophys. Res. 110(D12), 2005. doi:10.1029/2004JD005462

  • Bartle, A.: Hydropower potential and development activities. Energ Policy 30(14), 1231–1239 (2002). doi:10.1016/S0301-4215(02)00084-8

    CrossRef  Google Scholar 

  • Betz, A.: Introduction to the theory of flow machines (Randall, D.G. Trans). Pergamon Press, Oxford (1966)

    Google Scholar 

  • BP: Statistical Review of World Energy 2013. (2013)

  • Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Seyboth, K., Matschoss, P., Kadner, S., Zwickel, T., Eickemeier, P., Hansen, G., Schlomer, S., von Stechow, C.: Special report on renewable energy sources and climate change mitigation. Intergovernmental Panel on Climate Change, Working group III—Mitigation of Climate Change (2011)

    Google Scholar 

  • EPIA/ Greenpeace: Solar generation 6—solar photovoltaic electricity empowering the world 2011. European Photovoltaic Industry Association. Brussels, Belgium (2011)

    Google Scholar 

  • Gustavson, M.R.: Limits to wind power utilization. Science 204(4388), 13–17 (1979). doi:10.1126/science.204.4388.13

    CrossRef  Google Scholar 

  • GWEC: Global wind report 2012. Global Wind Energy Council (2013)

    Google Scholar 

  • Haberl, H., Tim, B., Bhattacharya, S.C., Erb, K.-H., Hoogwijk, M.: The global technical potential of bio-energy in 2050 considering sustainability constraints. Current Opin. Environ. Sustain. 2(5–6), 394–403 (2010). doi:10.1016/j.cosust.2010.10.007

  • Hoogwijk, M., de Vries, B., Turkenburg, W.: Assessment of the global and regional geographical, technical and economic potential of onshore wind energy. Energ. Econ. 26(5), 889–919 (2004). doi:10.1016/j.eneco.2004.04.016s

    CrossRef  Google Scholar 

  • IDL: The future of geothermal energy. Idaho National Laboratory (2006)

    Google Scholar 

  • IEA: World Energy Outlook 2010. OECD Publishing (2010). doi:10.1787/weo-2010-en

  • Jacobi, J., Starkweather, R.D.: Solar Photovoltaic Plant Operating and Maintenance Costs. ScottMadden Management Consultants, New York (2004)

    Google Scholar 

  • Krohn, S., Morthorst, P.-E., Awerbuch, S.: The economics of wind energy, European Wind Energy Association (2009)

    Google Scholar 

  • Ladanai, S., Vinterbaeck, J.: Global potential of sustainable biomass for energy. In: SLU, Institutionen for energi och teknik, Swedish University of Agricultural Sciences Department of Energy and Technology, Report 013 ISSN 1654–9406 (2009)

    Google Scholar 

  • Lund, H., Hvelplund, F., Østergaard, P.A., Möller, B., Vad Mathiesen, B., Andersen, A.N., Morthorst, P.E., Karlsson, K., Meibom, P., Münster, M., Munksgaard, J., Karnøe, P., Wenzel, H., Lindboe, H.H.: Danish wind power export and cost (2010). ISBN 978-87-91830-40-2

    Google Scholar 

  • McKendry, P.: Energy production from biomass (part 1): overview of biomass. Bioresour. Technol. 83(1), 37–46 (2002). doi:10.1016/S0960-8524(01)00118-3

    CrossRef  Google Scholar 

  • Mork, G., Barstow, S., Kabuth, A., Pontes, M.T.: Assessing the global wave energy potential. Shanghai, China, June 2010. In: Proceedings of OMAE 2010, 29th International Conference on Ocea

    Google Scholar 

  • Nijmeijer, K., Metz, S.: Chapter 5 Salinity gradient energy, vol. 2. Elsevier (2010). doi:10.1016/S1871-2711(09)00205-0

  • OECD/Nuclear Energy Agency: Projected costs of generating electricity (2010) doi:10.1787/9789264084315-en

  • REN21: Renewables 2011 global status report. REN21 Secretariat (2011)

    Google Scholar 

  • REN21: Renewables 2012 global status report. REN21 Secretariat (2012)

    Google Scholar 

  • REN21: Renewables 2013 global status report. REN21 Secretariat (2013)

    Google Scholar 

  • Royal Belgian Academy Council of Applied Science: Hydrogen as an energy carrier, April 2006

    Google Scholar 

  • Schmidhuber, J.: Chapter ten—impact of an increased biomass use on agricultural markets, prices and food security: a longer-term perspective. In: CFE Conference Papers Series No.2. Center for European Studies at Lunds University (2008)

    Google Scholar 

  • Sclater, J.G., Jaupart, C., Galson, D.: The heat flow through oceanic and continental crust and the heat loss of the earth. Rev. Geophys. 18(1), 269–311 (1980). doi:10.1029/RG018i001p00269

    CrossRef  Google Scholar 

  • Thorpe, T.W.: An overview of wave energy technologies: status, performance and costs. Wave power: moving towards commercial viability, Westminster, London, November 1999

    Google Scholar 

  • United States Census Bureau: World population: 1950–2050, December 2008.

  • US Department of Energy: Biomass for electricity generation. April 2011. retrieved from on 7 Feb 2012

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Patrick A. Narbel .

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Narbel, P.A., Hansen, J.P., Lien, J.R. (2014). Renewable Energy. In: Energy Technologies and Economics. Springer, Cham.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08224-0

  • Online ISBN: 978-3-319-08225-7

  • eBook Packages: EnergyEnergy (R0)