A Method of Process Similarity Measure Based on Task Clustering Abstraction

  • Jian Chen
  • Yongjian Yan
  • Xingmei Liu
  • Yang Yu
Part of the Lecture Notes in Business Information Processing book series (LNBIP, volume 181)


A variety of methods have been proposed to measure the similarity of process models. But most of the methods only consider the structure while ignoring the semantic feature of the process model. When dealing with the process models with similar semantics but different in structure, these methods fail to achieve due similarity value. In this paper, a novel process model abstraction method is proposed which can keep the semantics as well as the structure features of the process model during abstraction. The output can then be used in the similarity measure. The experiment shows that this method can significantly improve the similarity value and make it closer to actual conditions.


Process abstraction process similarity workflow management 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dijkman, R., Dumas, M., van Dongen, B., et al.: Similarity of business process models: Metrics and evaluation. Information Systems 36(2SI), 498–516 (2011)CrossRefGoogle Scholar
  2. 2.
    Levenshtein, V.I.: Binary Codes Capable of Correcting Deletions, Insertions and Reversals (1966)Google Scholar
  3. 3.
    Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic business process models. In: Proceedings of the Fourth Asia-Pacific Conference on Comceptual Modelling, vol. 67, pp. 71–80. Australian Computer Society, Inc. (2007)Google Scholar
  4. 4.
    Miller, G.A.: WordNet: A lexical database for English. Communications of the ACM 38(11), 39–41 (1995)CrossRefGoogle Scholar
  5. 5.
    Yan, Z., Dijkman, R., Grefen, P.: Fast Business Process Similarity Search with Feature-Based Similarity Estimation. In: Meersman, R., Dillon, T.S., Herrero, P. (eds.) OTM 2010. LNCS, vol. 6426, pp. 60–77. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Dijkman, R., Dumas, M., García-Bañuelos, L.: Graph Matching Algorithms for Business Process Model Similarity Search. In: Dayal, U., Eder, J., Koehler, J., Reijers, H.A. (eds.) BPM 2009. LNCS, vol. 5701, pp. 48–63. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  7. 7.
    Bae, J., Caverlee, J., Liu, L., Yan, H.: Process Mining by Measuring Process Block Similarity. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 141–152. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  8. 8.
    Fernández, M.-L., Valiente, G.: A graph distance metric combining maximum common subgraph and minimum common supergraph. Pattern Recognition Letters 22(6-7), 753–758 (2001)CrossRefzbMATHGoogle Scholar
  9. 9.
    Bunke, H., Shearer, K.: A graph distance metric based on the maximal common subgraph. Pattern Recognition Letters 19(3-4), 255–259 (1998)CrossRefzbMATHGoogle Scholar
  10. 10.
    Kunze, M., Weidlich, M., Weske, M.: Behavioral similarity: A proper metric. In: Rinderle-Ma, S., Toumani, F., Wolf, K. (eds.) BPM 2011. LNCS, vol. 6896, pp. 166–181. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  11. 11.
    van Dongen, B.F., Dijkman, R., Mendling, J.: Measuring Similarity between Business Process Models. In: Bellahsène, Z., Léonard, M. (eds.) CAiSE 2008. LNCS, vol. 5074, pp. 450–464. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  12. 12.
    Gerke, K., Cardoso, J., Claus, A.: Measuring the Compliance of Processes with Reference Models. In: Meersman, R., Dillon, T., Herrero, P. (eds.) OTM 2009, Part I. LNCS, vol. 5870, pp. 76–93. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  13. 13.
    Jung, J.-Y., Bae, J.: Workflow Clustering Method Based on Process Similarity. In: Gavrilova, M.L., Gervasi, O., Kumar, V., Tan, C.J.K., Taniar, D., Laganá, A., Mun, Y., Choo, H. (eds.) ICCSA 2006. LNCS, vol. 3981, pp. 379–389. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  14. 14.
    Wang, S., Wen, L., Wei, D., Wang, J.: SSDT matrix-based behavioral similarity algorithm for process models. Computer Integrated Manufacturing Systems 19(8), 1822–1831 (2013)Google Scholar
  15. 15.
    Yuan, C.: The Principle and Application of Petri Net. Publishing House of Electronics Industry (2005) (in Chinese)Google Scholar
  16. 16.
    Smirnov, S., Reijers, H.A., Weske, M.: A semantic approach for business process model abstraction. In: Mouratidis, H., Rolland, C. (eds.) CAiSE 2011. LNCS, vol. 6741, pp. 497–511. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  17. 17.
    Porter, M.F.: An algorithm for suffix stripping. Program: Electronic library and information systems 14(3), 130–137 (1980)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Jian Chen
    • 1
  • Yongjian Yan
    • 1
  • Xingmei Liu
    • 1
  • Yang Yu
    • 1
  1. 1.School of Information Science and TechnologySun Yat-Sen UniversityGuangzhouP.R.China

Personalised recommendations