Skip to main content

Factors Affecting Phosphate-Solubilizing Activity of Microbes: Current Status

  • Chapter
  • First Online:
Phosphate Solubilizing Microorganisms

Abstract

Phosphorous (P) plays an important role in regulating the vital metabolism and concomitantly the health of plants. The use of phosphate-solubilizing microorganisms (PSM) in P-deficient soils has been found effective in transforming insoluble P into soluble forms and, hence, enriching the soil P pool. The structure, composition, and physiological functions of soil dwellers depend, however, on the variable soil constituents and other environmental factors. Moreover, the establishment and performance of these microbes are affected severely by environmental stressors such as high temperature, pH, and salt, etc. prevalent in degraded ecosystems such as alkaline/saline soils. Therefore, any alteration in normal environmental factors leads to poor growth and survival of PSM. Also, PSM, when introduced exogenously into soil as inoculant, encounter a furious competition from the indigenous soil microflora. The success of the inoculants, therefore, depends on how quickly and efficiently such microbes overcome the stressful environmental variables. This chapter focuses on the effects of different factors on the overall functioning of the PSM, which is likely to help in developing environment-friendly bio-inoculants, especially for P acquisition by plants under environmentally challenged conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Acikel U, Erşan M (2010) Acid phosphatase production by Rhizopus delemar: a role played in the Ni(II) bioaccumulation process. J Hazard Mater 184:632–639

    CAS  PubMed  Google Scholar 

  • Ae N, Arihara J, Okada K, Yoshihara T, Johansen C (1990) Phosphorus uptake by pigeonpea and its role in cropping systems of the Indian subcontinent. Science 248:477–480

    CAS  PubMed  Google Scholar 

  • Afzal A, Bano A (2008) Rhizobium and phosphate solubilizing bacteria improve the yield and phosphorus uptake in wheat (Triticum aestivum). Int J Agric Biol 10:85–88

    CAS  Google Scholar 

  • Ahmad E (2014) Functional diversity and interactive effect of plant growth promoting rhizobacteria on performance of legumes. Ph.D. thesis, Aligarh Muslim University, Aligarh

    Google Scholar 

  • Ahmad N, Jha KK (1968) Solubilization of rock phosphate by microorganism isolated from Bihar soil. J Can Appl Microbiol 14:89–95

    CAS  Google Scholar 

  • Ahmad E, Khan MS, Zaidi A (2013) ACC deaminase producing Pseudomonas putida strain PSE3 and Rhizobium leguminosarum strain RP2 in synergism improves growth, nodulation and yield of pea grown in alluvial soils. Symbiosis 61:93–104

    CAS  Google Scholar 

  • Archana G, Buch A, Kumar GN (2012) Pivotal role of organic acid secretion by rhizobacteria in plant Growth promotion. In: Satyanarayana T et al (eds) Microorganisms in sustainable agriculture and biotechnology, Part 1. Springer Science and Business Media BV, Netherlands, pp 35–53

    Google Scholar 

  • Asea PEA, Kucey RMN, Stewart JWB (1988) Inorganic phosphate solubilization by two Penicillium species in solution culture and soil. Soil Biol Biochem 20:459–464

    CAS  Google Scholar 

  • Bajpai PD, Sundara RWVB (1971) Phosphate solubilizing bacteria. Solubilization of phosphate in liquid culture by selected bacteria as affected by different pH values. J Soil Sci Plant Nutr 17:41–43

    Google Scholar 

  • Balakrishnan P, Song CK, Cho H, Yang S, Kim DD, Yong CS, Choi H (2012) Inclusion complex effect on the bioavailability of clotrimazole from poloxamer-based solid suppository. Arch Pharm Res 35:1169–1175

    CAS  PubMed  Google Scholar 

  • Banerjee S, Palit R, Sengupta S, Standing D (2010) Stress induced phosphate solubilization by Arthrobacter sp. and Bacillus sp. isolated from tomato rhizosphere. AJCS 4:378–383

    CAS  Google Scholar 

  • Bar-Yosef B, Raviv M, Meiri A (1999) Biological and chemical aspect of fertilizer and water recycling in greenhouses: pepper, muskmelon and gypsophila. Final report 1996-1998 submitted to chief scientist, Ministry of Agriculture, Israel

    Google Scholar 

  • Benedetti A, Figliolia A, Izza C, Canali S, Rossi G (1996) Some thoughts on the physiological effects of humic acids; interaction with mineral fertilizers. Agrochime 40:229–240

    CAS  Google Scholar 

  • Bhattacharyya P, Jha D (2011) Plant growth-promoting rhizobacteria (PGPsR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350

    PubMed  Google Scholar 

  • Bolland M (2007) Effectiveness of rock phosphates. In: Farm note. Dept Agri Food, Govern Western Australia, p 215

    Google Scholar 

  • Botsford JL (1984) Osmoregulation in Rhizobium meliloti: inhibition of growth by salts. Arch Microbiol 137:124–127

    CAS  Google Scholar 

  • Boyce A, Walsh G (2007) Purification and characterisation of an acid phosphatase with phytase activity from Mucor hiemalis Wehmer. J Biotechnol 132:82–87

    CAS  PubMed  Google Scholar 

  • Brannon CA, Sommers LE (1985) Preparation and characterization of model humic polymers containing organic P. Soil Biol Biochem 17:213–219

    CAS  Google Scholar 

  • Cabrera A, Aguilera M, Fuentes S, Incerti C, Russell NJ, Ramos-Cormenzana A (2007) Halomonas indalinina sp. nov., amoderately halophilic bacterium isolated from a solar saltern in Cabo de Gata, Almerίa, southern Spain. Int J Syst Evol Microbiol 57:376–380

    CAS  PubMed  Google Scholar 

  • Chang CH, Yang SS (2009) Thermo-tolerant phosphate-solubilizing microbes for multi-functional biofertilizer preparation. Bioresour Technol 100:1648–1658

    CAS  PubMed  Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate abilities. Appl Soil Ecol 34:33–41

    Google Scholar 

  • Cherif-Silini H, Allaoua S, Mostefa G, Bilal Y, Fouzia A (2013) Solubilization of phosphate by the Bacillus under salt stress and in the presence of osmoprotectant compounds. Academic J 7:4562–4571

    Google Scholar 

  • Chien SH, Menon RG (1995) Factors affecting the agronomic effectiveness of phosphate rock for direct application. Fertil Res 41:227–234

    Google Scholar 

  • Chien SH, Prochnow LI, Mikkelsen R (2010) Agronomic use of phosphate rock for direct application. Better Crops 94:21–23

    Google Scholar 

  • Cho JS, Lee CW, Kang SH, Lee JC, Bok JD, Moon YS, Lee HG, Woo J, Choi YJ (2005) Molecular cloning of a phytase gene (phy M) from Pseudomonas syringae MOK1. Curr Microbiol 47:290–294

    Google Scholar 

  • Chookietwattana K, Maneewan K (2012) Screening of efficient halotolerant phosphate solubilizing bacterium and its effect on promoting plant growth under saline conditions. World Appl Sci J 16:1110–1117

    CAS  Google Scholar 

  • Cook RJ, Thomashow LS, Weller DM, Fujimoto D, Mazzola M, Bangera G, Kim D (1995) Molecular mechanisms of defence by rhizobacteria against root disease. Proc Natl Acad Sci USA 92:4197–4201

    CAS  PubMed Central  PubMed  Google Scholar 

  • Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3:389–395

    Google Scholar 

  • Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cunningham JE, Kuiack C (1992) Production of citric and oxalic acids and solubilization of calcium phosphate by Penicillium bilaii. Appl Environ Microbiol 58:1451–1458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Del Campillo SE, Van der Zee SEATM, Torrent J (1999) Modelling long-term phosphorous leaching and changes in phosphorous fertility in selectively fertilized acid sandy soils. Eur J Soil Sci 50:391–399

    Google Scholar 

  • Derrien D, Marol C, Balesdent J (2004) The dynamics of neutral sugars in the rhizosphere of wheat. An approach by 13 C pulse-labelling and GC/C/IRMS. Plant Soil 267:243–253

    CAS  Google Scholar 

  • Deshwal VK, Kumar P (2013) Production of plant growth promoting substance by Pseudomonads. JAIR 2:221–225

    Google Scholar 

  • El-Din SMSB, Saber MSM (1983) Effect of phosphate dissolving bacteria on P uptake by barley plants growth in salt-affected calcareous soil. Z Pflanzenernaehr Bodenkd 146:545–550

    CAS  Google Scholar 

  • Gaind S, Gaur AC (1991) Thermotolerant phosphate solubilizing microorganisms and their interaction with mungbean. Plant Soil 133:141–149

    CAS  Google Scholar 

  • Gaur AC (1986) Particle size of rock phosphate and microbial solubilization. Zentralbl Microbiol 141:103–105

    Google Scholar 

  • Gawas-Sakhalkar P, Singh SM, Simantini N, Ravindra R (2012) High-temperature optima phosphatases from the cold-tolerant arctic fungus Penicillium citrinum. Polar Res 31:11105

    CAS  Google Scholar 

  • Gillespie AR, Pope PE (1990) Rhizosphere acidification increases phosphorus recovery of black locust: I. Induced acidification and soil response. Soil Sci Soc Am J 54:533–537

    CAS  Google Scholar 

  • Goldstein AH (1986) Bacterial solubilization of mineral phosphates: historical perspectives and future prospects. Am J Altern Agric 1:57–65

    Google Scholar 

  • Gulati A, Rahi P, Vyas P (2008) Characterization of phosphate-solubilizing fluorescent pseudomonads from rhizosphere of seabuckthorn growing in cold deserts of Himalayas. Curr Microbiol 56:73–79

    CAS  PubMed  Google Scholar 

  • Gupta N, Sabat J, Parida R (2007) Solubilization of tricalcium phosphate and rock phosphate by microbes isolated from chromite, iron and manganese mines. Acta Bot Croat 66:197–204

    CAS  Google Scholar 

  • Gyaneshwar P, Naresh KG, Parekh LJ (1998) Effect of buffering on the phosphate solubilizing ability of microorganisms. World J Microbiol Biotechnol 14:669–673

    CAS  Google Scholar 

  • Habte M, Osorio NW (2012) Effect of nitrogen form on the effectiveness of a phosphate-solubilizing fungus to dissolve rock phosphate. J Biofertil Biopestici 3:1–4

    Google Scholar 

  • Hajra JN, Debnath NC (1987) Effect of some chelating agents on the inorganic transformation of added P in soil. Indian J Agric Chem 20:69–77

    CAS  Google Scholar 

  • Halder AK, Mishra AK, Bhattacharyya P, Chakrabartty PK (1990) Solubilization of rock phosphate by Rhizobium and Bradyrhizobium. J Gen Appl Microbiol 36:81–92

    CAS  Google Scholar 

  • Hamdali H, Moursalou K, Tchangbedji G, Ouhdouch Y, Mohamed H (2012) Isolation and characterization of rock phosphate solubilizing actinobacteria from a Togolese phosphate mine. Afr J Biotechnol 11:312–320

    CAS  Google Scholar 

  • Hameeda B, Harini G, Rupela OP, Wani SP, Reddy G (2008) Growth promotion of maize by phosphate solubilizing bacteria isolated from compost and microfauna. Microbiol Res 163:234–242

    CAS  PubMed  Google Scholar 

  • Hartwig UA, Joseph CM, Phillips DA (1991) Flavonoids released naturally from alfalfa seeds enhance growth of Rhizobium meliloti. Plant Physiol 95:797–803

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hedley MJ, Stewart JWB, Chauhan BS (1982) Changes in inorganic soil phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Sci Soc Am J 46:970–976

    CAS  Google Scholar 

  • Henri F, Laurette NN, Annette D, John Q, Wolfgang M, Francois-Xavier E, Dieudonne N (2008) Solubilization of inorganic phosphates and plant growth promotion of Cameroon. Afr J Microbiol Res 2:171–178

    Google Scholar 

  • Hoffland E, Findenegg GR, Nelemans JA (1989) Solubilization of rock phosphate by rape. II Local root exudation of organic acids as a response to P-starvation. Plant Soil 113:161–165

    CAS  Google Scholar 

  • Hu X, Chen J, Guo J (2006) Two phosphate-and potassium solubilizing bacteria isolated from Tianmu Mountain, Zhejiang, China. World J Microbiol Biotechnol 22:983–990

    CAS  Google Scholar 

  • Hwangbo H, Park RD, Kim YW, Rim YS, Park KH, Kim TH, Suh JS, Kim KY (2003) 2 α-ketogluconic production and phosphate solubilization by Enterobacter intermedium. Curr Microbiol 47:87–92

    CAS  PubMed  Google Scholar 

  • Infantes L, Otero LH, Beassoni PR, Boetsch C, Lisa AT, Domenech CE, Albert A (2012) The structural domains of Pseudomonas aeruginosa phosphorylcholine phosphatase cooperate in substrate hydrolysis: 3D structure and enzymatic mechanism. Mol Biol 423:503–514

    CAS  Google Scholar 

  • Jayashree S, Vadivukkarasi P, Anand K, Kato Y, Seshadri S (2011) Evaluation of pink-pigmented facultative methylotrophic bacteria for phosphate solubilization. Arch Microbiol 193:543–52

    CAS  PubMed  Google Scholar 

  • Johri JK, Surange S, Nautiyal CS (1999) Occurrence of salt, pH, and temperature-tolerant, phosphate-solubilizing bacteria in alkaline soils. Curr Microbiol 39:89–93

    CAS  PubMed  Google Scholar 

  • Jung I, Park DH, Park K (2002) A study of the growth condition and solubilization of phosphate from hydroxyapatite by Pantoea agglomerans. Biotechnol Bioprocess Eng 7:201–205

    CAS  Google Scholar 

  • Katiyar V, Goel R (2003) Solubilization of inorganic phosphate and plant growth promotion by cold tolerant mutants of Pseudomonas fluorescens. Microbiol Res 158:163–168

    CAS  PubMed  Google Scholar 

  • Kern J, Hellenbrand HJ, Gömmel M, Ammon Ch, Berg W (2012) Effects of climate factors and soil management on the methane flux in soils from annual and perennial energy crops. Biol Fertil Soils 48:1–8

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate solubilizing microorganisms in sustainable agriculture-a review. Agron Sustain Dev 27:29–43

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Ahemad M, Oves M (2009) Functional diversity among plant growth-promoting rhizobacteria. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin, pp 105–132

    Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi-current perspective. Arch Agron Soil Sci 56:73–98

    CAS  Google Scholar 

  • Khan MS, Ahmad E, Zaidi A, Oves M (2013) Functional aspect of phosphate-solubilizing bacteria: Importance in crop production. In: Maheshwari DK (ed) Bacteria in agrobiology: crop productivity. Springer, Berlin, pp 237–265

    Google Scholar 

  • Kim YH, Bae B, Choung YK (2005) Optimization of biological phosphorus removal from contaminated sediments with phosphate-solubilizing microorganisms. J Biosci Bioeng 99:23–29

    CAS  PubMed  Google Scholar 

  • Kucera I, Kaplan P (1996) A study on the transport and dissimilatory reduction of nitrate in Paracoccus denitrificans using viologen dyes as electron donors. Biochim Biophys Acta 1276:203–209

    Google Scholar 

  • Kumar A, Bhargava P, Rai LC (2010) Isolation and molecular characterization of phosphate solubilizing Enterobacter and Exiguobacterium species from paddy fields of Eastern Uttar Pradesh, India. Afr J Microbio Res 4:820–829

    CAS  Google Scholar 

  • Kumari A, Kapoor KK, Kundu BS, Mehta RK (2008) Identification of organic acids produced during rice straw decomposition and their role in rock phosphate solubilization. Plant Soil Environ 54:72–77

    CAS  Google Scholar 

  • Li L, Yang B, Zhou P (2011) Effect of acclimation strategy on the biological nitrification in the saline wastewater. Adv Mater Res 183–185:522–526

    Google Scholar 

  • Mahesh M, Neha G, Rajesh TS, Somashekhar R, Puttiah ET (2010) Isolation and characterization of extracellular thermostable alkaline phosphatase enzyme from Bacillus spp. Int J Appl Biol Pharm Technol 1:21–33

    Google Scholar 

  • Maheswar NU, Sathiyavani G (2012) Solubilization of phosphate by Bacillus spp., from groundnut rhizosphere (Arachis hypogaea L). J Chem Pharm Res 4:4007–4011

    Google Scholar 

  • Maliha R, Samina K, Najma A, Sadia A, Farooq L (2004) Organic acids production and phosphate solubilization by phosphate solubilizing microorganisms under in vitro conditions. Pak J Biol Sci 7:187–196

    Google Scholar 

  • McRae G, Monreal C (2011) LC-MS/MS quantitative analysis of reducing carbohydrates in soil solutions extracted from crop rhizospheres. Anal Bioanal Chem 400:2205–2215

    CAS  PubMed  Google Scholar 

  • Miguel CMS, Wright AL (2008) Microbial activity and phosphorus availability in a subtropical soil under different land uses. World J Agric Sci 4:314–320

    Google Scholar 

  • Mishra PK, Mishra S, Selvakumar G, Bisht SC, Kundu S, Bisht JK, Gupta HS (2008) Characterization of a psychrotrophic plant growth promoting Pseudomonas PGERs17 (MTCC 9000) isolated from North Western Indian Himalayas. Ann Microbiol 58:1–8

    Google Scholar 

  • Moussa SH, Hanane H, Yedir O, Eric P, George M, Revel JC, Mohamed H (2013) Moroccan rock phosphate solubilization during a thermo-anaerobic grassland waste biodegradation process. Afr J Biotechnol 12:6859–6865

    Google Scholar 

  • Nahas E (1996) Factors determining rock phosphate solubilization by microorganisms isolated from soil. World J Microbiol Biochem 12:567–572

    CAS  Google Scholar 

  • Narayanasamy G, Biswas DR (1998) Phosphate rocks of India: potentialities and constraints. Fertilizer News 43:21–28

    Google Scholar 

  • Narsian V, Patel HH (2000) Aspergillus aculeatus as a rock phosphate solubilizer. Soil Biol Biochem 32:559–565

    CAS  Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological grown medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    CAS  PubMed  Google Scholar 

  • Negi H, Das K, Kapri A, Goel R (2009) Phosphate solubilization by psychrophilic and psychrotolerant microorganisms: an asset for sustainable agriculture at low temperatures. In: Khan MS, Zaidi A (eds) Phosphate solubilizing microbes for crop improvement. Nova Science, New York, pp 145–160

    Google Scholar 

  • Omar SA (1998) The role of rock-phosphate-solubilizing fungi and vesicular-arbuscular-mycorrhiza (VAM) in growth of wheat plants fertilized with rock phosphate. World J Microbiol Biotechnol 14:211–218

    CAS  Google Scholar 

  • Padmavathi T, Usha S (2012) Phosphate solubilizers from rhizospheres of Piper nigrum in Karnataka, India. Chil J Agric Res 72:397–403

    Google Scholar 

  • Pallavi KP, Gupta PC (2013) A psychrotolerant strain kluyvera intermedia solubilizes inorganic phosphate at different carbon and nitrogen source. The Bioscan 8:1197–1201

    CAS  Google Scholar 

  • Panda R, Panda SP, Kar RN, Panda CR (2013) Solubilisation of Uganda low grade rock phosphate by Pseudomonas fluorescence. Res J Recent Sci 2:250–254

    Google Scholar 

  • Pandey A, Palni LMS, Mulkalwar P, Nadeem M (2002) Effect of temperature on solubilization of tricalcium phosphate by Pseudomonas corrugata. J Sci Ind Res 61:457–460

    CAS  Google Scholar 

  • Pandey A, Trivedi P, Kumar B, Palni LMS (2006) Characteristics of a phosphate solubilizing and antagonistic strain of Pseudomonas putida (B0) isolated from a sub-alpine location in the Indian central Himalaya. Curr Microbiol 53:102–107

    CAS  PubMed  Google Scholar 

  • Perrig D, Boiero M, Masciarelli O, Penna C, Ruiz O, Cassán F, Luna M (2007) Plant-growth-promoting compounds produced by two agronomically important strains of Azospirillum brasilense, and implications for inoculant formulation. Appl Microbiol Biotechnol 75:1143–1150

    CAS  PubMed  Google Scholar 

  • Plassard C, Dell B (2010) Phosphorus nutrition of mycorrhizal trees. Tree Physiol 30:1129–1139

    CAS  PubMed  Google Scholar 

  • Prejambda ID, Widada J, Kibirun C, Widianto D (2009) Secretion of organic acids by phosphate solubilizing bacteria isolated from oxisols. J Tanah Trop 14:245–251

    Google Scholar 

  • Promod KC, Dhevendaran K (1987) Studies on phosphobacteria in Cochin backwater. J Mar Biol Assoc Ind 29:297–305

    Google Scholar 

  • Qureshi AS, Dahot U, Panhwar SI (2010) Biosynthesis of alkaline phosphatase by Escherichia coli. Efr 13 in submerged fermentation. World Appl Sci J 8:50–56

    CAS  Google Scholar 

  • Qureshi AS, Marium S, Khushk I, Bhutto MA (2013) Production of alkaline phosphatase from newly isolated Aspergillus fumigatus EFRL05. Top Class J Microbiol 1:67–73

    Google Scholar 

  • Rao R, Manojkumar B, Nagasampige H, Ravikiran M, Radhakrishna D (2009) Thermotolerant N2-fixing and P-solubilizing microbes from partially decomposed municipal solid waste. World J Agric Sci 5:799–802

    CAS  Google Scholar 

  • Reddy MS, Kumar S, Babita K, Reddy MS (2002) Biosolubilization of poorly soluble rock phosphates by Aspergillus tubingensis and Aspergillus niger. Biores Technol 84:187–189

    CAS  Google Scholar 

  • Reena DT, Deepthi H, Pravitha MS, Lecturer D (2013) Isolation of phosphate solubilizing bacteria and fungi from rhizospheres soil from banana plants and its effect on the growth of Amaranthus cruentus L. IOSR J Pharm Biol Sci 5:6–11

    Google Scholar 

  • Relwani L, Krishna P, Reddy MS (2008) Effect of carbon and nitrogen sources on phosphate solubilization by a wild type strain and uv-induced mutants of Aspergilus tubingensis. Curr Microbiol 57:401–406

    CAS  PubMed  Google Scholar 

  • Reyes I, Bernier L, Simard R, Tanguay PH, Antoun H (1999) Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV induced mutants. FEMS Microbiol Ecol 28:281–290

    CAS  Google Scholar 

  • Reyes I, Bernier L, Antoun H (2002) Rock phosphate solubilization and colonization of maize rhizosphere by wild and genetically modified strains of Penicillium rugulosum. Microb Ecol 44:39–48

    CAS  PubMed  Google Scholar 

  • Rietz DN, Haynes RJ (2003) Effect of irrigation-induced salinity and sodicity on soil microbial activity. Soil Biol Biochem 35:845–854

    CAS  Google Scholar 

  • Rivaie AA, Loganathan P, Graham JD, Tillman RW, Payn TW (2008) Effect of phosphate rock and triple superphosphate on soil phosphorus fractions and their plant availability and downward movement in two volcanic ash soils under Pinus radiate plantations in New Zealand. Nutr Cycl Agroecosyst 82:75–88

    CAS  Google Scholar 

  • Rodriguez H, Gonzalez T, Goire I, Bashan Y (2004) Gluconic acid production and phosphate solubilization by the plant growth-promoting bacterium Azospirillum spp. Naturwissenschaften 91:552–555

    CAS  PubMed  Google Scholar 

  • Roos W, Luckener K (1994) Relationship between proton extrusion and fluxes of ammonium ions and organic acids in Penicillium cyclopium. J Gen Microbiol 130:1007–1014

    Google Scholar 

  • Rosado AS, de Azevedo FS, da Cruz DW, van Elsasand JD, Seldin L (1998) Phenotypic and genetic diversity of Paenibacillus azotofixans strains isolated from the rhizoplane or rhizosphere soil of different grasses. J Appl Microbiol 84:216–226

    Google Scholar 

  • Rowe JJ, Ubbink-Kok T, Molenaar D, Konings WN, Driessen AJM (1994) Nar K is a nitrite-extrusion system involved in anaerobic nitrate respiration by Escherichia coli. Mol Microbiol 12:579–586

    CAS  PubMed  Google Scholar 

  • Sánchez-Porro C, de la Haba RR, Soto-Ramírez N, Márquez MC, Montalvo-Rodríguez R, Ventosa A (2009) Description of Kushneria aurantia gen. nov., sp. nov., a novel member of the family Halomonadaceae, and a proposal for reclassification of Halomonas marisflavi as Kushneria marisflavi comb. nov., of Halomonas indalinina as Kushneria indalinina comb. nov. and of Halomonas avicenniae as Kushneria avicenniae comb. Nov. Int J Syst Evol Microbiol 59:397–405

    PubMed  Google Scholar 

  • Sarwar M, Hyder SI, Akhtar ME (2013) Conjunctive use of humic acid, bio fertilizer and phosphorus augmented nutrients contents in chickpea under green house conditions. Adv J Agric Res 1:1–5

    Google Scholar 

  • Schnitzer M, Khan SU (1972) Humic substances in the environment. Dekker, New York

    Google Scholar 

  • Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Mishra PK, Gupta HS (2008a) Characterization of a cold-tolerant plant growth-promoting bacterium Pantoea dispersa 1A isolated from a sub-alpine soil in the North Western Indian Himalayas. World J Microbiol Biotechnol 24:955–960

    CAS  Google Scholar 

  • Selvakumar G, Kundu S, Gupta AD, Shouche YS, Gupta HS (2008b) Isolation and characterization of non-rhizobial plant growth promoting bacteria from nodules of Kudzu (Pueraria thunbergiana) and their effect on wheat seedling growth. Curr Microbiol 56:134–139

    CAS  PubMed  Google Scholar 

  • Selvakumar G, Joshi P, Mishra PK, Bisht JK, Gupta HS (2009) Mountain aspect influences the genetic clustering of psychrotolerant phosphate solubilizing Pseudomonads in the Uttarakhand Himalayas. Curr Microbiol 59:432–438

    CAS  PubMed  Google Scholar 

  • Selvakumar G, Joshi P, Suyal P, Mishra PK, Joshi GK, Bisht JK, Bhatt JC, Gupta HS (2010a) Pseudomonas lurida M2RH3 (MTCC 9245), a psychrotolerant bacterium from the Uttarakhand Himalayas, solubilizes phosphate and promotes wheat seedling growth. World J Microbiol Biotechnol 27:1129–1135

    Google Scholar 

  • Selvakumar G, Kundu S, Joshi P, Nazim S, Gupta AD, Mishra PK, Gupta HS, Sharma V, Archana G, Naresh Kumar G (2010b) Plasmid load adversely affects growth and gluconic acid secretion ability of mineral phosphate-solubilizing rhizospheric bacterium Enterobacter asburiae PSI3 under P limited conditions. Microbiol Res 166:36–46

    Google Scholar 

  • Son HJ, Park GT, Cha MS, Heo MS (2006) Solubilization of insoluble inorganic phosphates by a novel salt and pH tolerant Pantoea agglomerans R-42 isolated from soybean rhizosphere. Bioresour Technol 97:204–210

    CAS  PubMed  Google Scholar 

  • Song OR, Lee SJ, Lee YS, Lee SC, Kim KK, Choi YL (2008) Solubilization of insoluble inorganic phosphate by Burkholderia cepacia DA23 isolated from cultivated soil. Braz J Microbiol 39:151–156

    PubMed Central  PubMed  Google Scholar 

  • Soni A, Rokad R, Sharma P (2013) Screening of efficient halotolerant phosphate solubilizing bacteria and their effect on seed germination under saline conditions. J Scient Innov Res 2:932–937

    Google Scholar 

  • Sposito G (1989) The chemistry of soils. Oxford Univ Press Inc, Oxford and New York, p 70

    Google Scholar 

  • Srinivasan R, Yandigeri M, Kashyap AAR (2012) Effect of salt on survival and P solubilization potential of phosphate solubilizing microorganisms from salt affected soils. Saudi J Biol Sci 19:427–434

    CAS  PubMed Central  PubMed  Google Scholar 

  • Srividya S, Soumya S, Pooja K (2009) Influence of environmental factors and salinity on phosphate solubilization by a newly isolated Aspergillus niger F7 from agricultural soil. Afr J Biotechnol 8:1864–1870

    CAS  Google Scholar 

  • Stephen J, Jisha MS (2011) Gluconic acid production as the principal mechanism of mineral phosphate solubilization by Burkholderia sp. (MTCC 8369). J Trop Agric 49:99–103

    CAS  Google Scholar 

  • Sulbaran M, Pérez E, Ball MM, Yarzábal LA, Bahsas A (2009) Characterization of the mineral phosphate-solubilizing activity of Pantoea aglomerans mmb051 isolated from an iron-rich soil in south eastern Venezuela (Bolıvar state). Curr Microbiol 58:378–383

    CAS  PubMed  Google Scholar 

  • Surange S, Wollum AG, Kumar N, Nautiyal CS (1997) Characterization of Rhizobium from root nodules of leguminous trees growing in alkaline soils. Can J Microbiol 43:891–894

    CAS  Google Scholar 

  • Tahir MA, Ibrahim M, Sarwar G, Iftikhar Y, Ha SK, Han KH, Zhang YS (2013) Impact of indigenous industrial compost on the growth of coarse and fine rice varieties under saline environment. Pertanika J Trop Agric Sci 36:61–70

    Google Scholar 

  • Tripathi S, Kumari S, Chakraborty A, Gupta A, Chakrabarti K, Bandyapadhyay BK (2006) Microbial biomass and its activities in salt-affected coastal soils. Biol Fertil Soils 42:273–277

    Google Scholar 

  • Tripura C, Sashidhar B, Podile AR (2007) Ethyl methanesulfonate mutagenesis-enhanced mineral phosphate solubilization by groundnut-associated Serratia marcescens GPS-5. Curr Microbiol 54:79–84

    CAS  PubMed  Google Scholar 

  • Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vanessa NLW, Ram CD, Richard SBG (2008) Salinity and sodicity effects on respiration and microbial biomass of soil. Biol Fertil Soil 44:943–953

    Google Scholar 

  • Vassileva M, Azcon R, Barea JM, Vassileva N (1999) Effect of encapsulated cells of Enterobacter sp on plant growth and phosphate uptake. Bioresour Technol 67:229–232

    CAS  Google Scholar 

  • Vaughan D, McDonald IR (1976) Some effects of HA on caution uptake by parenchyma tissue. Soil Biol Biochem 8:415–421

    CAS  Google Scholar 

  • Victoria DE, Reyes LL, Benitez ADLC (2009) Use of 16S ribosomal gene for characterization of phosphate solubilizing bacteria associated with corn. Rev Fitotec Mex 32:31–37

    Google Scholar 

  • Vikram A, Hamzehzarghani H (2008) Effect of phosphate solubilizing bacteria on nodulation and growth parameters of greengram (Vigna radiata L. Wilczek). Res J Microbiol 3:62–72

    Google Scholar 

  • Wani PA, Khan MS, Zaidi A (2008) Chromium-reducing and plant growth-promoting Mesorhizobium improves chickpea growth in chromium-amended soil. Biotechnol Lett 30:159–163

    CAS  PubMed  Google Scholar 

  • Wenzel CL, Ashford AE, Summerell BA (1994) Phosphate-solubilizing bacteria associated with proteoid roots of seedlings of waratah [Telopea speciosissima (Sm) R.Br.]. New Phytol 128:487–496

    Google Scholar 

  • Winarso S, Sulistyanto D, Handayanto E (2011) Effects of humic compounds and phosphate solubilizing bacteria on phosphorus availability in an acid soil. J Ecol Nat Environ 3:232–240

    CAS  Google Scholar 

  • Xiao CQ, Chi RA, Li WS, Zheng Y (2011) Biosolubilization of phosphorus from rock phosphate by moderately thermophilic and mesophilic bacteria. Miner Eng 24:956–958

    CAS  Google Scholar 

  • Yadav J, Verma JP, Yadav SK, Tiwari KN (2010) Effect of salt concentration and pH on soil inhabiting fungus Penicillium citrinum Thom. for solubilization of tricalcium phosphate. Microbiol J 72:625–630

    Google Scholar 

  • Yadav J, Verma JP, Yadav SK, Tiwari KN (2011) Effect of salt concentration and pH on soil inhabiting fungus Peniciliium citrinum Thom. for solubilization of tricalcium phosphate. Microbiol J 1:25–32

    Google Scholar 

  • Yoon JH, Choi SH, Lee KC, Kho YH, Kang K, Park YH (2001) Halomonas marisflavae sp. nov., a halophilic bacterium isolated from the yellow sea in Korea. Int J Syst Evol Microbiol 51:1171–1177

    CAS  PubMed  Google Scholar 

  • Yuan BC, Li ZZ, Liu H, Gao M, Zhang YY (2007) Microbial biomass and activity in salt affected soils under arid conditions. Appl Soil Ecol 35:319–328

    Google Scholar 

  • Zahran HH (1997) Diversity, adaptation and activity of the bacterial flora in saline environments. Biol Fertil Soil 25:211–223

    CAS  Google Scholar 

  • Zaidi A (1999) Synergistic interactions of nitrogen fixing microorganisms with phosphate mobilizing microorganisms, Ph.D. thesis, Aligarh Muslim University, Aligarh

    Google Scholar 

  • Zaidi A, Khan MS, Amil M (2003) Interactive effect of rhizotrophic microorganisms on yield and nutrient uptake of chickpea (Cicer arietinum L.). Eur J Agron 19:15–21

    Google Scholar 

  • Zaidi A, Khan MS, Ahmad M, Oves M, Wani PA (2009) Recent advances in plant growth promotion by phosphate solubilizing microbes. In: Khan MS, Zaidi A, Mussarat J (eds) Microbial strategies for crop improvement. Springer, Berlin, pp 23–32

    Google Scholar 

  • Zhu F, Qu L, Hong X, Ssun X (2011) Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. ycwa18 from Daqiao Saltern on the coast of yellow sea of China. Evid Based Complement Alternat Med 2011:615032

    PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javed Musarrat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Musarrat, J., Khan, M.S. (2014). Factors Affecting Phosphate-Solubilizing Activity of Microbes: Current Status. In: Khan, M., Zaidi, A., Musarrat, J. (eds) Phosphate Solubilizing Microorganisms. Springer, Cham. https://doi.org/10.1007/978-3-319-08216-5_3

Download citation

Publish with us

Policies and ethics