Skip to main content

Microphos: Principles, Production and Application Strategies

  • Chapter
  • First Online:
Phosphate Solubilizing Microorganisms

Abstract

The increasing demand for inexpensive, ecologically sound and environmentally friendly agricultural practices has warranted the use of microbial fertilizers. The preparation from microbial inoculants (biofertilizers) especially the organisms capable of transforming insoluble phosphorus (P) to soluble and available forms is one of the better choices for enhancing crop production by supplying essential nutrients and other growth regulators in different production systems. Furthermore, the critical interactions between microbial communities with soil constituents and plants have provided some novel clues to better exploit them in agricultural practices. Even though the use of microbial preparation in agriculture is an old practice, the production of efficient inoculants expressing consistent performance under field soil is a major obstacle in their extensive and practical application. Therefore, the variations in the performance of microbial inoculants including microphos have greatly hampered their large-scale application. On the other hand, the selection of the technology for inoculant production and modes of their application are key to their success. We highlight here the various strategies employed to produce the phosphatic microbial inoculants (microphos), and how this inoculants can be applied under different agro-ecological niches is discussed and considered.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Fattah DA, Eweda WE, Zayed MS, Hassanein MK (2013) Effect of carrier materials, sterilization method, and storage temperature on survival and biological activities of Azotobacter chroococcum inoculant. Ann Agric Sci 58:111–118

    Google Scholar 

  • Adesemoye AO, Kloepper JW (2009) Plant-microbes interactions in enhanced fertilizer-use efficiency. Appl Microbiol Biotechnol 85:1–12

    CAS  PubMed  Google Scholar 

  • Ahemad M, Khan MS (2010) Toxicological effects of selective herbicides on plant growth promoting activities of phosphate solubilizing Klebsiella sp. strain PS19. Curr Microbiol 62:532–8

    PubMed  Google Scholar 

  • Ahemad M, Khan MS (2011a) Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica compestris) rhizosphere. Chemosphere 86:945–950

    PubMed  Google Scholar 

  • Ahemad M, Khan MS (2011b) Toxicological assessment of selective pesticides towards plant growth promoting activities of phosphate solubilizing Pseudomonas aeruginosa. Acta Microbiol Immunol Hung 58:169–187

    CAS  PubMed  Google Scholar 

  • Ahemad M, Khan MS (2012) Evaluation of plant-growth-promoting activities of rhizobacterium Pseudomonas putida under herbicide stress. Ann Microbiol 62:1531–1540

    CAS  Google Scholar 

  • Ahemad M, Zaidi A, Khan MS, Oves M (2009) Biological importance of phosphorus and phosphate solubilizing microbes. In: Khan MS, Zaidi A (eds) Phosphate solubilizing microbes for crop improvement. Nova Science Publishers, Inc., New York, USA, pp 1–14

    Google Scholar 

  • Ahmad E, Khan MS, Zaidi A (2013) ACC deaminase producing Pseudomonas putida strain PSE3 and Rhizobium leguminosarum strain RP2 in synergism improves growth, nodulation and yield of pea grown in alluvial soils. Symbiosis 61:93–104

    CAS  Google Scholar 

  • Ahmad E, Zaidi A, Khan MS, Oves M (2012) Heavy metal toxicity to symbiotic nitrogen fixing microorganism and host legumes. In: Zaidi A et al (eds) Toxicity of heavy metals to legumes and bioremediation. Springer, Vienna, pp 29–44

    Google Scholar 

  • Ai C, Liang G, Sun J, Wang X, He P, Zhou W (2013) Different roles of rhizosphere effect and long-term fertilization in the activity and community structure of ammonia oxidizers in a calcareous fluvo-aquic soil. Soil Biol Biochem 57:30–42

    CAS  Google Scholar 

  • Ai C, Liang G, Sun J, Wang X, Zhou W (2012) Responses of extracellular enzyme activities and microbial community in both the rhizosphere and bulk soil to long-term fertilization practices in a fluvo-aquic soil. Geoderma 173–174:330–338

    Google Scholar 

  • Albareda M, Dardanelli MS, Sousa C, Megias M, Temprano F, Rodriguez-Navarro DN (2006) Factors affecting the attachment of rhizospheric bacteria to bean and soybean roots. FEMS Microbiol Lett 259:67–73

    CAS  PubMed  Google Scholar 

  • Alexander DB, Zuberer DA (1991) Use of chrome azurol S reagents to evaluate siderophore production by rhizosphere bacteria. Biol Fertil Soils 12:39–45

    CAS  Google Scholar 

  • Alvarez MI, Sueldo RJ, Barassi CA (1996) Effect of Azospirillum on coleoptile growth in wheat seedlings under water stress. Cereal Res Commun 24:101–107

    Google Scholar 

  • Andrews JH, Harris RF (2000) The ecology and biogeography of microorganisms on plant surfaces. Annu Rev Phytopathol 38:145–180

    PubMed  Google Scholar 

  • Ashraf M, Hasnain S, Berge O, Mahmood T (2004) Inoculating wheat seedlings with exopolysaccharide-producing bacteria restricts sodium uptake and stimulates plant growth under salt stress. J Food Sci 71:89–99

    Google Scholar 

  • Avis TJ, Grave V, Antoun H, Tweddel RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil Biol Biochem 40:1733–1740

    CAS  Google Scholar 

  • Ayala S, Rao EVSP (2002) Perspective of soil fertility management with a focus on fertilizer use for crop productivity. Curr Sci 82:797–807

    Google Scholar 

  • Babana AH, Dicko AH, Maïga K, Traoré D (2013) Characterization of rock phosphate-solubilizing microorganisms isolated from wheat (Triticum aestivum L.) rhizosphere in Mali. J Microbiol Microbial Res 1:1–6

    Google Scholar 

  • Bais HP, Weir TL, Perry LG, Simon G, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    CAS  PubMed  Google Scholar 

  • Bakker AW, Schipper B (1987) Microbial cyanide production in the rhizosphere in relation to potato yield reduction and Pseudomonas spp. mediated plant growth stimulation. Soil Biol Biochem 19:451–457

    CAS  Google Scholar 

  • Balakrishna G, Shiva Shanker A, Pindi PK (2012) Isolation of phosphate solibulizing actinomycetes from forest soils of Mahabubnagar district. IOSR J Pharm 2:271–275

    Google Scholar 

  • Bashan Y (1998) Inoculants of plant growth promoting bacteria for use in agriculture. Biotechnol Adv 16:729–770

    CAS  Google Scholar 

  • Bauer AW (1966) Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol 45:493–496

    CAS  PubMed  Google Scholar 

  • Behbahani M (2010) Investigation of biological behavior and colonization ability of Iranian indigenous phosphate solubilizing bacteria. Sci Hortic 124:393–399

    CAS  Google Scholar 

  • Ben Rebah F, Tyagi RD, Prévost D (2002) Wastewater sludge as a substrate for growth and carrier for rhizobia: the effect of storage conditions on survival of Sinorhizobium meliloti. Biores Technol 83:145–151

    CAS  Google Scholar 

  • Benizri E, Baudoin E, Guckert A (2001) Root colonization by inoculated plant growth-promoting rhizobacteria. Biocontrol Sci Technol 11:557–574

    Google Scholar 

  • Benizri E, Dedourge O, Di Battista-Leboeuf C, Nguyen C, Piutti S, Guckert A (2002) Effect of maize rhizodeposits on soil microbial community structure. Appl Soil Ecol 21:261–265

    Google Scholar 

  • Borling K, Otabbong E, Barberis E (2001) Phosphorus sorption in relation to soil properties in some cultivated Swedish soils. Nutr Cycl Agroecosyst 59:39–46

    CAS  Google Scholar 

  • Brick JM, Bostock RM, Silversone SE (1991) Rapid in situ assay for indole acetic acid production by bacteria immobilized on nitrocellulose membrane. Appl Environ Microbiol 57:535–538

    Google Scholar 

  • Bringhurst RM, Cardon ZG, Gage DJ (2001) Galactosides in the rhizosphere: utilization by Sinorhizobium meliloti and development of a biosensor. Proc Natl Acad Sci USA 98:4540–4545

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buck JD, Cleverdon RC (1960) The spread plate as a method for the enumeration of marine bacteria. Limnol Oceanogr 5:78–80

    Google Scholar 

  • Cardoso EJBN, Freitas SS (1992) A rizosfera. In: Cardoso EJBN, Tsai SM, Neves PCP (eds) Microbiologia do solo. Sociedade Brasileira de Ciencia do Solo, Campinas, pp 41–57

    Google Scholar 

  • Cassán F, Perrig D, Sgroy V, Masciarelli O, Pennab C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35

    Google Scholar 

  • Cassan F, Vanderleyden J, Spaepen S (2013) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul. doi: 10.1007/s00344-013-9362-4

    Google Scholar 

  • Chen YP, Rekha PD, Arun AB, Shen FT, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41

    Google Scholar 

  • Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H, Sa T (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974

    CAS  Google Scholar 

  • Compant S, Gangl H, Sessitsch A (2013) Visualization of niches of colonization of firmicutes with Bacillus spp. in the rhizosphere, rhizoplane, and endorhiza of grapevine plants at flowering stage of development by FISH Microscopy. In: de Bruijn FJ (ed) Molecular microbial ecology of the rhizosphere, vol 1, 2. Wiley, Hoboken, NJ, 10.1002/9781118297674.ch39

    Google Scholar 

  • Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Barka EA (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394

    CAS  PubMed  Google Scholar 

  • Dworkin M, Foster J (1958) Experiments with some microorganisms which utilize ethane and hydrogen. J Bacteriol 75:592–601

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dye DW (1962) The inadequacy of the usual determinative tests for the identification of Xanthomonas spp. New Zeal J Sci 5:393–416

    Google Scholar 

  • Eftekhari G, Fallah AR, Akbari GA, Mohaddesi A, Allahdadi I (2010) Effect of phosphate solubilizing bacteria and phosphate fertilizer on rice growth parameters. Iranian J Soil Res (Soil Water Sci) 23:2

    Google Scholar 

  • Elliot LF, Lynch JM (1984) Pseudomonads as a factor in the growth of winter wheat (Triticum aestivum L). Soil Biol Biochem 16:69–71

    Google Scholar 

  • Elser JJ (2012) Phosphorus: a limiting nutrient for humanity? Curr Opin Biotechnol 23:833–838

    CAS  PubMed  Google Scholar 

  • Fontaine S, Barot S (2005) Size and functional diversity of microbe populations control plant persistence and long-term soil carbon accumulation. Ecol Lett 8:1075–1087

    Google Scholar 

  • Franco-Correa M, Angelica Q, Christian CS, Maria XR, Barea JM (2010) Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Appl Soil Ecol 45:209–217

    Google Scholar 

  • Gamalero E, Fracchia L, Cavaletto M, Garbaye J, Frey-Klett P, Varese GC, Martinotti MG (2003) Characterization of functional traits of two fluorescent pseudomonads isolated from basidiomes of ectomycorrhizal fungi. Soil Biol Biochem 35:55–65

    CAS  Google Scholar 

  • Gerretsen FC (1948) The influence of microorganisms on the phosphorus uptake by plant. Plant Soil 1:51–81

    CAS  Google Scholar 

  • Ghyselinck J, Velivelli SL, Heylen K, O'Herlihy E, Franco J (2013) Bioprospecting in potato fields in the Central Andean Highlands: screening of rhizobacteria for plant growth-promoting properties. Syst Appl Microbiol 36:116–127

    CAS  PubMed  Google Scholar 

  • Glick BR (1995) The enhancement of plant growth by free living bacteria. Can J Microbiol 41:109–117

    CAS  Google Scholar 

  • Gordon S, Weber RP (1951) The calorimetric estimation of IAA. Plant Physiol 26:192–195

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gulati A, Vyas P, Rahi P, Kasana RC (2009) Plant growth-promoting and rhizosphere-competent Acinetobacter rhizosphaerae strain BIHB 723 from the cold deserts of the Himalayas. Curr Microbiol 58:371–377

    CAS  PubMed  Google Scholar 

  • Guo JH, Qi HY, Guo YH, Ge HL, Gong LY, Zhang LX (2004) Biocontrol of tomato wilt by plant growth-promoting rhizobacteria. Biol Control 29:66–72

    Google Scholar 

  • Gupta R, Singal R, Shankar A, Kuhad RC, Saxena RK (1994) A modified plate assay for screening phosphate solubilizing microorganisms. J Gen Appl Microbiol 40:255–260

    CAS  Google Scholar 

  • Haas D, Defago G (2005) Biological control of soil-borne pathogens by fluorescent pseudomonads. Nat Rev Microbiol 3:307–319

    CAS  PubMed  Google Scholar 

  • Hamdali H, Hafidi M, Virolle MJ, Ouhdouch Y (2012) Rock phosphate-solubilizing actinomycetes: screening for plant growth-promoting activities. World J Microbiol Biotechnol 24:2565–2575

    Google Scholar 

  • Hanson PJ, Edwards NT, Garten CT, Andrews JA (2000) Separating root and soil microbial contributions to soil respiration: a review of methods and observations. Biogeochemistry 48:115–146

    CAS  Google Scholar 

  • Hao X, Cho CM, Racz GJ, Chang C (2002) Chemical retardation of phosphate diffusion in an acid soil as affected by liming. Nutr Cycl Agroecosyst 64:213–224

    CAS  Google Scholar 

  • Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598

    Google Scholar 

  • Hegde SV, Brahmaprakash GP (1992) A dry granular inoculant of Rhizobium for soil application. Plant Soil 144:309–311

    Google Scholar 

  • Hiltner L (1904) Uber neuere Erfahrungen und Probleme auf dem Gebiet der Bodenbakteriologie und unter besonderer Berucksichtigung der Grundungung und Brache. Arb Deut Landw Ges 98:59–78

    Google Scholar 

  • Holt JG, Krieg NR, Sneath PHA, Staley JT, Willams ST (1994) Bergeys manual of determinative bacteriology. Williams and Wilkins, Baltimore

    Google Scholar 

  • Honma M, Shimomura T (1978) Metabolism of 1-aminocyclopropane-1-carboxylic acid. Agric Biol Chem 43:1825–31

    Google Scholar 

  • Hui L, Xiao-Qin W, Jia-Hong R, Jian-Ren Y (2011) Isolation and identification of phosphobacteria in poplar rhizosphere from different regions of china. Pedosphere 21:90–97

    Google Scholar 

  • Illmer P, Schinner F (1992) Solubilization of inorganic phosphates by microorganisms isolated from forest soil. Soil Biol Biochem 24:389–95

    Google Scholar 

  • Jackson ML (1967) Soil chemical analysis. Prentice-Hall, New Delhi

    Google Scholar 

  • Kavamura VN, Santos SN, Silva JL, Parma MM, Avila LA (2013) Screening of Brazilian cacti rhizobacteria for plant growth promotion under drought. Microbiol Res 168:183–191

    CAS  PubMed  Google Scholar 

  • Kaviyarasi K, Kanimozhi K, Madhanraj P, Panneerselvam A, Ambikapathy V (2011) Isolation, identification and molecular characterization of phosphate solubilizing actinomycetes isolated from the coastal region of manora, Thanjavur (Dt.). Asian J Pharm Tech 1:119–122

    Google Scholar 

  • Kaymak HC (2011) Potential of PGPR in agricultural innovations. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Microbiol monographs, vol 18. Springer, Berlin, pp 45–79

    Google Scholar 

  • Keyser HH, Somasegaran P, Bohlool BB (1993) Rhizobial ecology and technology. In: Metting EB (ed) Soil microbial ecology: applications in agricultural and environmental management. Dekker, New York, NY, pp 205–226

    Google Scholar 

  • Khan MS, Ahmad E, Zaidi A, Oves M (2013) Functional aspect of phosphate-solubilizing bacteria: importance in crop production. In: Maheshwari DK et al (eds) Bacteria in agrobiology: crop productivity. Springer, Berlin, pp 237–265

    Google Scholar 

  • Khan MS, Zaidi A, Aamil M (2002) Biocontrol of fungal pathogens by the use of plant growth promoting rhizobacteria and nitrogen fixing microorganisms. J Indian Bot Soc 81:255–263

    Google Scholar 

  • Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi-current perspective. Arch Agro Soil Sci 56:73–98

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2006) Role of phosphate-solubilizing microorganisms in sustainable agriculture-A review. Agron Sustain Dev 27:29–43

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA (2007) Role of phosphate solubilizing microorganisms in sustainable agriculture-a review. Agron Sustain Dev 27:29–43

    Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Ahemad M, Oves M (2009) Functional diversity among plant growth-promoting rhizobacteria. In: Khan MS, Zaidi A, Musarrat J (eds) Microbial strategies for crop improvement. Springer, Berlin Heidelberg, pp 105–132

    Google Scholar 

  • Kim KY, Jordan D, Krishnan HB (1997) Rahnella aqualitis, bacterium isolated from soybean rhizosphere, can solubilize hydroxyapatite. FEMS Microbiol Lett 153:273–277

    CAS  Google Scholar 

  • King JE (1932) The colorimetric determination of phosphorus. Biochem J 26:292–297

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kloepper JW, Scher FM, Tripping B (1986) Emergence promoting rhizobacteria: description and implication for agriculture. In: Swinburne TR (ed) Iron, siderophores and plant diseases. Plenum, New York, pp 155–164

    Google Scholar 

  • Lemanski K, Scheu S (2014) Incorporation of 13C labelled glucose into soil microorganisms of grassland: effects of fertilizer addition and plant functional group composition. Soil Biol Biochem 69:38–45

    CAS  Google Scholar 

  • López-Bellido L, Muñoz-Romero V, López-Bellido RJ (2013) Nitrate accumulation in the soil profile: long-term effects of tillage, rotation and N rate in a Mediterranean Vertisol. Soil Till Res 130:18–23

    Google Scholar 

  • Louw HA, Webley DM (1959) A study of soil bacteria dissolving certain phosphate fertilizers and related compounds. J Appl Bacteriol 22:227–233

    CAS  Google Scholar 

  • Lowery OH, Rosebrough NJ, Farr AL, Randal RJ (1951) Protein measurements with the Folin Phenol reagent. J Biol Chem 193:265–275

    Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–56

    CAS  PubMed  Google Scholar 

  • Lugtenberg BJ, Dekkers L, Bloemberg GV (2001) Molecular determinants of rhizosphere colonization by Pseudomonas. Annu Rev Phytopathol 39:461–490

    CAS  PubMed  Google Scholar 

  • Luo S, Chen L, Chen J, Xiao X, Xu T, Wan Y, Rao C, Liu C, Liu Y, Lai C, Zeng G (2011) Analysis and characterization of cultivable heavy metal-resistant bacterial endophytes isolated from Cd-hyperaccumulator Solanum nigrum L. and their potential use for phytoremediation. Chemosphere 85:1130–1138

    CAS  PubMed  Google Scholar 

  • Maheshwari DK (2008) Sawdust as a superior carrier for production of multipurpose bioinoculant using plant growth promoting rhizobial and pseudomonad strains and their impact on productivity of Trifolium repense. Curr Sci 95:90–94

    Google Scholar 

  • Maheshwari DK, Kumar S, Kumar B, Pandey P (2011) Co-inoculation of urea and DAP tolerant Sinorhizobium meliloti and Pseudomonas aeruginosa as integrated approach for growth enhancement of Brassica Juncea. Indian J Microbiol 50:425–431

    PubMed Central  Google Scholar 

  • Malhi SS, Gan Y, Rancey JP (2007) Yield, seed quality, and sulfur uptake of Brassica oilseed crops in response to sulfur fertilization. Agron J 99:570–577

    CAS  Google Scholar 

  • Malusá E, Sas-Paszt L, Ciesielska J (2012) Technologies for beneficial microorganisms inocula used as biofertilizers. Sci World J 491206

    Google Scholar 

  • Margalejo H, Brun Y, Messy P, Fleurette J (1984) Antibiotic susceptibility testing by the disk method. Comparative evaluation of 5 commercial systems. Pathol Biol (Paris) 32:483–487

    CAS  Google Scholar 

  • Marra LM, de Oliveira SM, Soares CRFS, deSouza Moreira FM (2011) Solubilisation of inorganic phosphates by inoculants strains from tropical legumes. Sci Agric (Piracicaba, Braz) 68:603–609

    CAS  Google Scholar 

  • Mayak S, Tirosh S, Glick BR (2004) Plant growth promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Physiol 166:525–530

    CAS  Google Scholar 

  • Mody BR, Bindra MO, Modi VV (1989) Extracellular polysaccharides of cowpea rhizobia: compositional and functional studies. Arch Microbiol 1:2–5

    Google Scholar 

  • Montesinos E (2003) Plant-associated microorganisms: a view from the scope of microbiology. Int Microbiol 6:221–223

    CAS  PubMed  Google Scholar 

  • Nascimento F, Brígido C, Alho L, Glick BR, Oliveira S (2011) Enhanced chickpea growth-promotion ability of a Mesorhizobium strain expressing an exogenous ACC deaminase gene. Plant Soil 353:221–230

    Google Scholar 

  • Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270

    CAS  PubMed  Google Scholar 

  • Naz I, Bano A, Hassan TU (2009) Isolation of phytohormones producing plant growth promoting rhizobacteria from weeds growing in Khewra salt range, Pakistan and their implication in providing salt tolerance to Glycine max L. Afr J Biotechnol 8:5762–576

    CAS  Google Scholar 

  • Norrish K, Rosser H (1983) Mineral phosphate. In: Soils, an Australian viewpoint. Academic and CSIRO, Melbourne and London, pp 335–361

    Google Scholar 

  • Oves M, Khan MS, Zaidi A (2013) Chromium reducing and plant growth promoting novel strain Pseudomonas aeruginosa OSG41 enhance chickpea growth in chromium amended soils. Eur J Soil Biol 56:72–83

    CAS  Google Scholar 

  • Panhwar QA, Othman R, Rahman ZA, Meon S, Ismail MR (2012) Isolation and characterization of phosphate-solubilizing bacteria from aerobic rice. Afr J Biotechnol 11:2711–2719

    CAS  Google Scholar 

  • Penrose DM, Glick BR (2003) Methods for isolating and characterizing ACC deaminase-containing plant growth-promoting rhizobacteria. Physiol Plant 118:10–15

    CAS  PubMed  Google Scholar 

  • Pikovskaya RI (1948) Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiologica 17:362–370

    CAS  Google Scholar 

  • Porter JN, Tresner HD (1960) A method for the preferential isolation of actinomycetes from soil. J Appl Microbiol 8:174–178

    CAS  Google Scholar 

  • Premono ME, Moawad AM, Vlek PLG (1996) Effect of phosphate-solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere. Indonesian J Crop Sci 11:13–23

    Google Scholar 

  • Ranjan A, Mahalakshmi MR, Sridevi M (2013) Isolation and characterization of phosphate-solubilizing bacterial species from different crop fields of Salem, Tamil Nadu, India. Int J Nutr Pharmacol Neurol Dis 3:29–33

    CAS  Google Scholar 

  • Rawat S, Izhari A, Khan A (2011) Bacterial diversity in wheat rhizosphere and their characterization. Adv Appl Sci Res 2:351–356

    Google Scholar 

  • Reeves MW, Pine L, Neilands JB, Balows A (1983) Absence of siderophore activity in Legionella species grown in iron-deficient media. J Bacteriol 154:324–329

    CAS  PubMed Central  PubMed  Google Scholar 

  • Richardson AE, Barea J, McNeill AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    CAS  Google Scholar 

  • Roca A, Pizarro-Tobias P, Udaondo Z, Fernandez M, Matilla MA (2013) Analysis of the plant growth-promoting properties encoded by the genome of the rhizobacterium Pseudomonas putida BIRD-1. Environ Microbiol 15:780–794

    CAS  PubMed  Google Scholar 

  • Rodríguez H, Fraga R (1999) Phosphate-solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339

    PubMed  Google Scholar 

  • Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9

    CAS  PubMed  Google Scholar 

  • Saber K, Nahla L, Ahmed D, Chedly A (2005) Effect of P on nodule formation and N fixation in bean. Agron Sustain Dev 25:389–393

    Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Sashidhar B, Podile AR (2010) Mineral phosphate solubilization by rhizosphere bacteria and scope for manipulation of the direct oxidation pathway involving glucose dehydrogenase. J Appl Microbiol 109:1–12

    CAS  PubMed  Google Scholar 

  • Saxena A, Sharma JV (2007) Isolation of tricalcium phosphate solubilizing strains from semiarid agricultural fields of Rajasthan, India. J Pure Appl Microbiol 1:269–280

    Google Scholar 

  • Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648

    CAS  PubMed  Google Scholar 

  • Sambanthamoorthy K, Sloup RE, Parashar V, Smith JM, Kim EE (2012) Identification of small molecules that antagonize diguanylate cyclase enzymes to inhibit biofilm formation. Antimicrob Agents Chemother 56:5202–5211

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sanjotha P, Mahantesh P, Patil CS (2011) Isolation and screening of efficiency of phosphate solubilizing microbes. Int J Microbiol Res 3:56–58

    Google Scholar 

  • Saravanakumar D, Vijayakumar C, Kumar N, Samiyappan R (2007) PGPR-induced defense responses in the tea plant against blister blight disease. Crop Prot 26:556–565

    Google Scholar 

  • Scheffer F, Schachtschabel P (1988) Lehrbuch der Bodenkunde. Enke, Stuttgart

    Google Scholar 

  • Smith RS (1992) Legume inoculant formulation and application. Can J Microbiol 38:485–492

    Google Scholar 

  • Sørensen J (1997) The rhizosphere as a habitat for soil microorganisms. In: van Elsas JD, Trevors JT, Wellington EMK (eds) Modern soil microbiology. Dekker, New York, NY, pp 21–45

    Google Scholar 

  • Stajner D, Kevreaan S, Gasaic O, Mimica-Dudic N, Zongli H (1997) Nitrogen and Azotobacter chroococcum enhance oxidative stress tolerance in sugar beet. Biol Plant 39:441–445

    CAS  Google Scholar 

  • Steenhoudt O, Vanderleyden J (2000) Azospirillum, a freeliving nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24:487–506

    CAS  PubMed  Google Scholar 

  • Stevenson F, Cole M (1999) Cycles of the soil: carbon, nitrogen, phosphorus, sulfur, micronutrients, 2nd edn. John Wiley & Sons Inc., New York, NY, p 427

    Google Scholar 

  • Tallapragada P, Seshachala U (2012) Phosphate-solubilizing microbes and their occurrence in the rhizospheres of Piper betel in Karnataka, India. Turk J Biol 36:25–35

    CAS  Google Scholar 

  • Tamura K, Dudely J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    CAS  PubMed  Google Scholar 

  • Thompson JD (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position- specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trivedi P, Pandey A, Palni LMS (2005) Carrier-based preparations of plant growth-promoting bacterial inoculants suitable for use in cooler regions. World J Microbiol Biotechnol 21:941–945

    Google Scholar 

  • Vessey JK (2003) Plant growth promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586

    CAS  Google Scholar 

  • Vikram A, Hamzehzarghani H (2008) Effect of phosphate solubilizing bacteria on nodulation and growth parameters of greengram (Vigna radiat L. Wilchek). Res J Microbiol 3:62–72

    Google Scholar 

  • Vorholt JA (2012) Microbial life in the phyllosphere. Nat Rev Microbiol 10:828–840

    CAS  PubMed  Google Scholar 

  • Walker TS, Bais HP, Grotewold E, Vivanco JM (2003) Root exudation and rhizosphere biology. Plant Physiol 132:44–51

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walsh UF, Morrissey JP, O’Gara F (2001) Pseudomonas for biocontrol of phytopathogens: from functional genomics to commercial exploitation. Curr Opin Biotechnol 12:289–295

    CAS  PubMed  Google Scholar 

  • Wani PA, Khan MS (2010) Bacillus species enhance growth parameters of chickpea (Cicer arietinum L.) in chromium stressed soils. Food Chem Toxicol 48:3262–3267

    CAS  PubMed  Google Scholar 

  • Weller DM, Cook RJ (1986) Suppression of root diseases of wheat by seed treatments with fluorescent pseudomonads, and implication of Pythium control. Can J Plant Pathol 8:328–344

    Google Scholar 

  • Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511

    CAS  PubMed  Google Scholar 

  • Williams ST, Davies FL (1965) Use of antibiotics for selective isolation and enumeration of actinomycetes in soil. J Gen Microbiol 38:251–261

    CAS  PubMed  Google Scholar 

  • Wong PTW, Baker R (1984) Suppression of wheat take all and Ophiobolus patch by fluorescent pseudomonads from a Fusarium suppressive soil. Soil Biol Biochem 16:397–403

    Google Scholar 

  • Xiang WL, Liang HZ, Liu S, Luo F, Tang J, Li MY, Che ZM (2011) Isolation and performance evaluation of halotolerant phosphate solubilizing bacteria from the rhizospheric soils of historic Dagong Brine Well in China. World J Microbiol Biotechnol 27:2629–2637

    CAS  Google Scholar 

  • Yadav S, Kaushik R, Saxena AK, Arora DK (2011) Diversity and phylogeny of plant growth-promoting bacilli from moderately acidic soil. J Basic Microbiol 51:98–106

    CAS  PubMed  Google Scholar 

  • Yasmin H, Bano A (2011) Isolation and characterization of phosphate solubilizing bacteria from rhizosphere soil of weeds of khewra salt range and attock. Pak J Bot 43:1663–1668

    Google Scholar 

  • Zahir ZA, Arshad M, Frankenberger WT (2004) Plant growth promoting rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:96–168

    Google Scholar 

  • Zaidi A, Khan MS, Ahemad M, Oves M (2009) Plant growth promotion by phosphate solubilizing bacteria. Acta Microbiol Immunol Hung 56:263–284

    CAS  PubMed  Google Scholar 

  • Zhu F, Qu L, Hong X, Sun X (2011) Isolation and characterization of a phosphate-solubilizing halophilic bacterium Kushneria sp. YCWA18 from Daqiao Saltern on the coast of yellow sea of China. Evid Based Complement Alternat Med 2011. doi: 10.1155/2011/615032

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Almas Zaidi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Zaidi, A., Khan, M.S., Ahmad, E. (2014). Microphos: Principles, Production and Application Strategies. In: Khan, M., Zaidi, A., Musarrat, J. (eds) Phosphate Solubilizing Microorganisms. Springer, Cham. https://doi.org/10.1007/978-3-319-08216-5_1

Download citation

Publish with us

Policies and ethics