Skip to main content

Visual Fuzzy Control for Blimp Robot to Follow 3D Aerial Object

  • Conference paper
Neural Networks and Artificial Intelligence (ICNNAI 2014)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 440))

Abstract

This works presents a novel visual servoing system in order to follow a 3D aerial moving object by blimp robot and to estimate the metric distances between both of them. To realize the autonomous aerial target following, an efficient vision-based object detection and localization algorithm is proposed by using Speeded Up Robust Features technique and Inverse Perspective Mapping which allows the blimp robot to obtain a bird’s eye view. The fuzzy control system is relies on the visual information given by the computer vision algorithm. The fuzzy sets model were introduced imperially based on possibilities distributions and frequency analysis of the empirical data. The system is focused on continuously following the aerial target and maintaining it within a fixed safe distance. The algorithm showing robustness against illumination changes , rotation invariance as well as size invariance. The results indicate that the proposed algorithm is suitable for complex control missions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Browning, B., Veloso, M.: Real Time, Adaptive Color Based Robot Vision. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3871–3876 (2005)

    Google Scholar 

  2. Guenard, N., Hamel, T., Mahony, R.: A Practical Visual Servo Control for an Unmanned Aerial Vehicle. IEEE Trans. Robot. 24, 331–340 (2008)

    Article  Google Scholar 

  3. Lin, F., Lum, K., Chen, B., Lee, T.: Development of a Vision-Based Ground Target Detection and Tracking System for a Small Unmanned Helicopter. Sci. China—Series F: Inf. Sci. 52, 2201–2215 (2009)

    MATH  Google Scholar 

  4. Korodi, A., Codrean, A., Banita, L., Volosencu, C.: Aspects Regarding The Object Following Control Procedure for Wheeled Mobile Robots. WSEAS Trans. System Control 3, 537–546 (2008)

    Google Scholar 

  5. Betser, A., Vela, P., Pryor, G., Tannenbaum, A.: Flying Information Using a Pursuit Guidance Algorithm. In: American Control Conference, vol. 7, pp. 5085–5090 (2005)

    Google Scholar 

  6. Savkin, A., Teimoori, H.: Bearings-Only Guidance of an Autonomous Vehicle Following a Moving Target With a Smaller Minimum Turning Radius. In: 47th IEEE Conference on Decision and Control, pp. 4239–4243 (2008)

    Google Scholar 

  7. Fukao, T., Kanzawa, T., Osuka, K.: Tracking Control of an Aerial Blimp Robot Based on Image Information. In: 16th IEEE International Conference on Control Applications part of IEEE Multi-Conference on Systems and Control, Singapore, pp. 874–879 (2007)

    Google Scholar 

  8. Canals, R., Roussel, A., Famechon, J., Treuillet, S.: A Bi-processor Oriented Vision-Based Target Tracking System. IEEE Trans. Ind. Electron. 49(2), 500–506 (2002)

    Article  Google Scholar 

  9. Mejias, L., Saripalli, S., Cervera, P., Sukhatme, G.: Visual Servoing of an Autonomous Helicopter in Urban Areas Using Feature Tracking. Journal of Field Robot 23, 185–199 (2006)

    Article  Google Scholar 

  10. Hu, W.M., Tan, T.N., Wang, L., Maybank, S.: A Survey on Visual Surveillance of Object Motion and Behaviours. IEEE Trans. Syst. 34, 334–352 (2004)

    Google Scholar 

  11. Hu, Y., Zhao, W., Wang, L.: Vision-based Target Tracking and Collision Avoidance for Two Autonomous Robotic Fish. IEEE Trans. Ind. Electron. 56, 1401–1410 (2009)

    Article  Google Scholar 

  12. Xu, D., Han, L., Tan, M., Li, Y.: Ceiling-Based Visual Positioning for an Indoor Mobile Robot With Monocular Vision. IEEE Trans. Ind. Electron. 56, 1617–1628 (2009)

    Article  Google Scholar 

  13. Lowe, D.: Distinctive Image Features From Scale Invariant Keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  14. Bay, H., Ess, A., Tuyelaars, T., Gool, V.: SURF: Speeded Up Robust Features. Computer Vision and Image Understanding CVIU 110(3), 346–359 (2008)

    Article  Google Scholar 

  15. Saripalli, S., Sukhatme, G.S.: Landing a helicopter on a moving target. In: Proceedings of IEEE International Conference on Robotics and Automation, Rome, Italy, pp. 2030–2035 (2007)

    Google Scholar 

  16. Bourquardez, O., Mahony, R., Guenard, N., Chaumette, F., Hamel, T., Eck, L.: Image based visual servo control of the translation kinematics of a quadrotor aerial vehicle. IEEE Transactions on Robotics 25(3), 743–749 (2009)

    Article  Google Scholar 

  17. Choi, H., Kim, Y.: UAV guidance using a monocular-vision sensor for aerial target tracking. Control Engineering Practice Journal 22, 10–19 (2014)

    Article  Google Scholar 

  18. Passerieus, J.M., Cappel, D.V.: Optimal Observer Maneuver for Bearings-Only Tracking. IEEE Transactions on Aerospace and Electronic Systems 34(3), 777–788 (1998)

    Article  Google Scholar 

  19. Watanabe, Y., Johnson, E.N., Calise, A.J.: Optimal 3D Guidance from a 2D Vision Sensor. In: AIAA Guidance, Navigation, and Control Conference, Providence, RI (2004)

    Google Scholar 

  20. Cao, C., Hovakimyan, N.: Vision-Based Aerial Tracking using Intelligent Excitation. In: American Control Conference, Portland, OR, pp. 5091–5096 (2005)

    Google Scholar 

  21. Stepanyan, V., Hovakimyan, N.: A Guidance Law for Visual Tracking of a Maneuvering Target. In: IEEE Proceeding of American Control Conference, Minneapolis, MN, pp. 2850–2855 (2006)

    Google Scholar 

  22. Stepanyan, V., Hovakimyan, N.: Adaptive Disturbance Rejection Controller for Visual Tracking of a Maneuvering Target. Journal of Guidance, Control and Dynamics 30(4), 1090–1106 (2007)

    Article  Google Scholar 

  23. Mondragon, I.F., Campoy, P., Olivares-Mendez, M.A., Martinez, C.: 3D Object following based on visual information for unmanned aerial vehicles. In: Robotics Symposium IEEE IX Latin American and IEEE Colombian Conference on Automatic Control and Industry Applications, Bogota (2011)

    Google Scholar 

  24. Olivares-Mendez, M.A., Mondragon, I.F., Campoy, P., Mejias, L., Martinez, C.: Aerial Object Following Using Fuzzy Servoing. In: Proceeding of Workshop on Research, Development and Education on Unmanned Aerial Systems RED-UAS, Seville, Spain (2011)

    Google Scholar 

  25. Joslyn, C.: In Support of an Independent Possibility Theory. In: de Cooman, G., Raun, D., Kerre, E.E. (eds.) Foundations and Applications of Possibility Theory, pp. 152–164. World Scientific, Singapore (1995a)

    Google Scholar 

  26. Zadeh, L.: Fuzzy Sets as the Basis for a Theory of Possibility. Fuzzy Sets and Systems 1, 3–28 (1978); Reprinted in Fuzzy Sets and Systems 100(suppl.), 9–34 (1999)

    Google Scholar 

  27. Dubois, D., Prade, H.: Probability Theory and Multiple-valued Logics. A Clarification. Annals of Mathematics and Artificial Intelligence 32, 35–66 (2001)

    Article  MathSciNet  Google Scholar 

  28. Joslyn, C.: Measurement of Possibilistic Histograms from Interval Data. NCR Research Associate, Mail Code 522, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA (1996)

    Google Scholar 

  29. Al-Jarrah, R., Roth, H.: Design Blimp Robot based on Embedded System & Software Architecture with high level communication & Fuzzy Logic. In: Proceeding in IEEE 9th International Symposium on Mechatronics & its Applications (ISMA 2013), Amman, Jordan (2013)

    Google Scholar 

  30. Al-Jarrah, R., Roth, H.: Developed Blimp Robot Based on Ultrasonic Sensors Using Possibilities Distributions and Fuzzy Logic. In: 5th International Conference on Computer and Automation Engineering, ICCAE, Belgium, vol. 1(2), pp. 119–125 (2013)

    Google Scholar 

  31. Al-Jarrah, R., AitJellal, R., Roth, H.: Blimp based on Embedded Computer Vision and Fuzzy Control for Following Ground Vehicles. In: 3rd IFAC Symposium on Telematics Applications (TA 2013), Seoul, Korea (2013)

    Google Scholar 

  32. Fischer, M.A., Bolles, R.C.: Random Sample Consensus: a paradigm for Model Fitting With Applications to Image Analysis and Automated Cartography. Communication of the ACM 24(6), 381–395 (1981)

    Article  Google Scholar 

  33. Mallot, H.A., Biilthoff, H.H., Little, J.J., Bohrer, S.: Inverse Perspective Mapping Simplifies Optical Flow Computation and Obstacle Detection. Biological Cybernetics, 177–185 (1991)

    Google Scholar 

  34. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press (2000)

    Google Scholar 

  35. Bradsky, G., Kaebler, A.: Learning OpenCV: Computer Vision with the OpenCV Library, pp. 408–412. Oreilly Media (2008)

    Google Scholar 

  36. Jang, J.-S.R., Sun, C.-T., Mizutani, E.: Nuero Fuzzy and Soft Computing, pp. 13–91. Prentice-Hall, Upper Saddle River (1997)

    Google Scholar 

  37. Botzheim, J., Hámori, B., Kóczy, L.T.: Applying Bacterial Algorithm to Optimize Trapezoidal Membership Functions in a Fuzzy Rule Base. In: Proceeding of the International Conference on Computational Intelligence, Theory and Applications, 7th Fuzzy Days, Dortmund, Germany (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Al-Jarrah, R., Roth, H. (2014). Visual Fuzzy Control for Blimp Robot to Follow 3D Aerial Object. In: Golovko, V., Imada, A. (eds) Neural Networks and Artificial Intelligence. ICNNAI 2014. Communications in Computer and Information Science, vol 440. Springer, Cham. https://doi.org/10.1007/978-3-319-08201-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08201-1_10

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08200-4

  • Online ISBN: 978-3-319-08201-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics