Skip to main content

Do Reflectance Spectra of Different Plant Stands in Wetland Indicate Species Properties?

  • Chapter
  • First Online:

Abstract

This contribution discusses the relationships between reflectance spectra obtained by field spectroscopy and properties of the leaves of the species that form a stand and the relation between reflectance spectra and stand characteristics. We thus investigate the reliability of conclusions made at the species levels on the basis of the reflectance spectra of the stands. We studied monospecific and mixed stands that thrive in habitats along a hydrological gradient in the intermittent Lake Cerknica. The reflectance spectra differed significantly at the stand and leaf levels; however, although the shape of the reflectance spectra of a monospecific stand with Phalaris arundinacea was similar to the shape of the leaf spectra, this was not the case for mixed stands. The leaf morphological and biochemical properties that explain most of the variability of the spectra differed for graminoids and different dicotyledons. This study shows that based on the reflectance spectra, the species properties for monospecific stands can be deduced, while for mixed stands, such deductions can be misleading.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Asner, G. P. (1998). Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of Environment, 64, 234–253.

    Article  Google Scholar 

  • Asner, G. P., & Martin, R. E. (2008). Spectral and chemical analysis of tropical forests: Scaling from leaf to canopy levels. Remote Sensing of Environment, 112, 3958–3970.

    Article  Google Scholar 

  • Baldini, E., Facini, O., Nerozzi, F., Rossi, F., & Rotondi, A. (1997). Leaf characteristics and optical properties of different wood species. Trees, 12, 73–81.

    Article  Google Scholar 

  • Baltzer, J. L., & Thomas, S. C. (2005). Leaf optical responses to light and soil nutrient availability in temperate deciduous trees. American Journal of Botany, 92, 214–223.

    Article  CAS  Google Scholar 

  • Boeger, M. R., & Poulson, M. (2003). Morphological adaptations and photosynthetic rates of amphibious Veronica anagallis-aquatica L. (Scrophulariaceae) under different flow regimes. Aquatic Botany, 75, 123–135.

    Article  Google Scholar 

  • Braun-Blanquet, J. (1964). Pflanzensoziologie. Grunzüge der Vegetationskunde. Wien: Springer.

    Book  Google Scholar 

  • Castro, K. L., & Sanchez-Azofeifa, G. A. (2008). Changes in spectral properties, chlorophyll content and internal mesophyll structure of senescing Populus balsamifera and Populus tremuloides leaves. Sensors, 81, 51–69.

    Article  Google Scholar 

  • Castro-Esau, K. L., Sanchez-Azofeifa, G. A., Rivard, B., Wright, S. J., & Quesada, M. (2006). Variability in leaf optical properties of Mesoamerican trees and the potential for species classification. American Journal of Botany, 93, 517–530.

    Article  Google Scholar 

  • Chandrasekharan, R. (2005). Optical properties of leaves. http://www.docstoc.com/docs/49236849/Optical-properties-of-leaves. Accessed 4 Dec 2013.

  • Ehleringer, J. (1980). Leaf morphology and reflectance in relation to water and temperature stress. In N. C. Turner & P. J. Kramer (Eds.), Adaptation of plants to water and high temperature stress (pp. 295–308). New York: Wiley.

    Google Scholar 

  • Gamon, J. A. (2006). Spectral Network SpecNet—what is it and why do we need it? Remote Sensing of Environment, 103, 227–235.

    Article  Google Scholar 

  • Gamon, J. A., Field, C. B., Bilger, W., Björkman, Ö., Fredeen, A. L., & Peñuelas, J. (1990). Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies. Oecologia, 85, 1–7.

    Article  Google Scholar 

  • Ganapol, B. D., Johnson, L. F., Hlavka, C. A., Peterson, D. L., & Bond, B. (1999). LCM2: A coupled leaf/canopy radiative transfer model. Remote Sensing of Environment, 70, 153–166.

    Article  Google Scholar 

  • Gao, B. C., Montes, M. J., Davis, C. O., & Goetz, A. F. H. (2009). Atmospheric correction algorithms for hyperspectral remote sensing data of land and ocean. Remote Sensing of Environment, 113, 17–24.

    Article  Google Scholar 

  • Gitelson, A. A., Zur, Y., Chivkunova, O. B., & Merzlyak, M. N. (2002). Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochemistry and Photobiology, 75, 272–281.

    Article  CAS  Google Scholar 

  • Gitelson, A. A., Chivkunova, O. B., & Merzlyak, M. N. (2009). Nondestructive estimation of anthocyanins and chlorophylls in anthocyanic leaves. American Journal of Botany, 96, 1861–1868.

    Article  CAS  Google Scholar 

  • Gurevitch, J., Scheiner, S. M., & Fox, G. (2002). The ecology of plants. Sunderland: Sinauer Associates.

    Google Scholar 

  • Holmes, M. G., & Keiller, D. R. (2002). Effects of pubescence and waxes on the reflectance of leaves in the ultraviolet and photosynthetic wavebands: A comparison of a range of species. Plant Cell Environment, 25, 85–93.

    Article  CAS  Google Scholar 

  • Klančnik, K., Mlinar, M., & Gaberščik, A. (2012). Heterophylly results in a variety of “spectral signatures” in aquatic plant species. Aquatic Botany, 98, 20–26.

    Article  Google Scholar 

  • Klančnik, K., Vogel-Mikuš, K., & Gaberščik, A. (2013a). Silicified structures affect leaf optical properties in grasses and sedge. Journal of Photochemistry and Photobiology B. doi:10.1016/j.jphotobiol.2013.10.011.

    Google Scholar 

  • Klančnik, K., Pančić, M., & Gaberščik, A. (2013b). Leaf optical properties in amphibious plant species are affected by multiple leaf traits. Hydrobiologia. doi:10.1007/s10750-013-1646-y.

    Google Scholar 

  • Kranjc, A. (2003). Hidrološke značilnosti (Hydrological Characteristics). In A. Gaberščik (Ed.), Jezero, ki izginja – Monografija o Cerkniškem jezeru (The Vanishing Lake – Monograph on Lake Cerknica) (pp. 26–37). Ljubljana: Društvo ekologov Slovenije, [in Slovenian].

    Google Scholar 

  • Larcher, W. (2003). Physiological plant ecology, ecophysiology and stress physiology of functional groups (4th ed.). Heidelberg: Springer.

    Google Scholar 

  • Levizou, E., Drilias, P., Psaras, G. K., & Manetas, Y. (2005). Nondestructive assessment of leaf chemistry and physiology through spectral reflectance measurements may be misleading when changes in trichome density co-occur. New Phytologist, 165, 463–472.

    Article  CAS  Google Scholar 

  • Martinčič, A., & Leskovar, I. (2003). Vegetacija (Vegetation). In A. Gaberščik (Ed.), Jezero, ki izginja – Monografija o Cerkniškem jezeru (The Vanishing Lake – Monograph on Lake Cerknica) (pp. 81–95). Ljubljana: Društvo ekologov Slovenije, [in Slovenian].

    Google Scholar 

  • Milton, E. J., Schaepman, M. E., Anderson, K., Kneubühler, M., & Fox, N. (2009). Progress in field spectroscopy. Remote Sensing of Environment, 113, 92–109.

    Article  Google Scholar 

  • Ollinger, S. V. (2010). Sources of variability in canopy reflectance and the convergent properties of plants. New Phytologist, 189, 375–394.

    Article  Google Scholar 

  • Pfündel, E. E., Agati, G., & Cerovic, Z. G. (2007). Optical properties of plant surfaces. In M. Riederer & C. Müller (Eds.), Biology of the plant cuticle (Annual plant reviews, Vol. 23, pp. 216–249). London: Blackwell.

    Google Scholar 

  • Qi, Y. D., Bai, S., Vogelmann, T. C., Heisler, G. M., & Qin, J. (2002). Methodology for comprehensive evaluation of UV-B tolerance in trees. In: J. R. Slusser, J. R. Herman, & W. Gao (Eds.), Proceedings of SPIE: Ultraviolet ground- and space-based measurements, models, and effects, San Diego.

    Google Scholar 

  • Rautiainen, M., Mõtus, M., Stenberg, P., & Ervasti, S. (2008). Crown envelope shape measurements and models. Silva Fennici, 42, 19–33.

    Google Scholar 

  • Robe, W. E., & Griffiths, H. (2000). Physiological and photosynthetic plasticity in the amphibious, freshwater plant, Litorella uniflora, during the transition from aquatic to dry terrestrial environments. Plant Cell Environment, 23, 1041–1054.

    Article  Google Scholar 

  • Schaller, J., Brackhage, C., & Dudel, G. (2012). Silicon availability changes structural carbon ratio and phenol content of grasses. Environmental and Experimental Botany, 77, 283–287.

    Article  CAS  Google Scholar 

  • Schoelynck, J., Bal, K., Backx, H., Okruszko, T., Meire, P., & Struyf, E. (2010). Silica uptake in aquatic and wetland macrophytes: A strategic choice between silica, lignin and cellulose? New Phytologist, 168, 385–391.

    Article  Google Scholar 

  • Schulze, E. D., Beck, E., & Müller-Hohenstein, K. (2005). Plant ecology. Heidelberg: Springer.

    Google Scholar 

  • Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 812, 337–354.

    Article  Google Scholar 

  • Šraj-Kržič, N., & Gaberščik, A. (2005). Photochemical efficiency of amphibious plants in an intermittent lake. Aquatic Botany, 83, 281–288.

    Article  Google Scholar 

  • ter Braak, C. J. F., & Šmilauer, P. (2002). CANOCO reference manual and CanoDraw for Windows user’s guide software for canonical community ordination (version 4.5) (Microcomputer power). Ithaca: Biometris.

    Google Scholar 

  • Ullah, S., Schlerf, M., Skidmore, A. K., & Hecker, C. (2012). Identifying plant species using mid-wave infrared 2.5–6-μm and thermal infrared 8–14-μm emissivity spectra. Remote Sensing of Environment, 118, 95–102.

    Article  Google Scholar 

  • Ustin, S. L. (2010). Spectral identification of native and non-native plant species. http://www.asdi.com/resource-center/application-notes/spectral-identification-plant-species. Accessed 4 Dec 2013.

  • Vogelmann, T. C. (1993). Plant tissue optics. Annual Review of Plant Physiology and Plant Molecular Biology, 44, 231–251.

    Article  Google Scholar 

  • Woodman, R. L., & Fernandes, G. W. (1991). Differential mechanical defense: Herbivory, evapotranspiration and leaf hairs. Oikos, 60, 11–19.

    Article  Google Scholar 

  • Yoshimura, H., Zhu, H., Wu, Y., & Ma, R. (2010). Spectral properties of plant leaves pertaining to urban landscape design of broad-spectrum solar ultraviolet radiation reduction. International Journal of Biometeorology, 54, 179–191.

    Article  Google Scholar 

Download references

Acknowledgements

The work was supported by the Ministry of Education, Science and Sport, Republic of Slovenia, through the programmes ‘Biology of Plants’ (P1-0212) and ‘Young Researchers’ (33135).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alenka Gaberščik .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Klančnik, K., Zelnik, I., Gnezda, P., Gaberščik, A. (2015). Do Reflectance Spectra of Different Plant Stands in Wetland Indicate Species Properties?. In: Vymazal, J. (eds) The Role of Natural and Constructed Wetlands in Nutrient Cycling and Retention on the Landscape. Springer, Cham. https://doi.org/10.1007/978-3-319-08177-9_6

Download citation

Publish with us

Policies and ethics