Skip to main content

Subsurface Flow Constructed Wetland Models: Review and Prospects

  • Chapter
  • First Online:

Abstract

Numerical models are recognized nowadays as a powerful tool to increase the understanding of the internals of constructed wetlands and to help improve their design. Over the last decade many models have been developed, and many simulation studies have been published. Despite diversity is generally a positive thing, having so many different models can be confusing for potential users and may also hinder further development of the existing ones. The aim of this paper is to summarize the state of the art of this discipline, focussing the attention on the most feature-rich process-based models for constructed wetlands for urban wastewater treatment. Their description is combined with a feature comparison in a tabular format to facilitate the selection of one or another based on the specific needs of the potential user. Moreover, a discussion is made regarding the advantages of each reviewed model regarding features, licencing and expected evolution of each of them. Later in the document, we describe the essential phenomena, parameters and processes that we believe that future generation of constructed wetlands models should incorporate, to guide further research on this discipline. Although this paper is focused on models used in academic circles, a model developed to optimize the design of combined sewer overflow wetlands is presented as an example of the potential of design-focused wetlands. At the end of the paper we provide an overview of the past, present and future of constructed wetlands models and analyse were we stand and which is the way to go and the main goals in the near future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Akratos, C., Papaspyros, J., & Tsihrintzis, V. (2008). An artificial neural network model and design equations for BOD and COD removal prediction in horizontal subsurface flow constructed wetlands. Chemical Engineering Journal, 143(1–3), 96–110.

    Article  CAS  Google Scholar 

  • Akratos, C. S., Papaspyros, J. N. E., & Tsihrintzis, V. (2009). Total nitrogen and ammonia removal prediction in horizontal subsurface flow constructed wetlands: Use of artificial neural networks and development of a design equation. Bioresource Technology, 100(2), 586–596.

    Article  CAS  Google Scholar 

  • Allen, W. C., Hook, P. B., Biederman, J. A., & Stein, O. R. (2002). Temperature and wet- land plant species effects on wastewater treatment and root zone oxidation. Journal of Environmental Quality, 31(3), 1010–1016.

    Article  CAS  Google Scholar 

  • Batstone, D., Keller, J., Angelidaki, R. I., Kalyuzhnyi, S. V., Pavlostathis, S. G., Rozzi, A., Sanders, W. T. M., Siegrist, H., & Vavilin, V. A. (2002). Anaerobic digestion model no. 1 (ADM1). London: IWA Publishing.

    Google Scholar 

  • Boller, M. A., & Kavanaugh, M. C. (1995). Particle characteristics and headloss increase in granular media filtration. Water Research, 29(4), 1139–1149.

    Article  CAS  Google Scholar 

  • Bresler, E. (1973). Simultaneous transport of solutes and water under transient unsaturated flow conditions. Water Resources Research, 9(4), 975–986.

    Article  CAS  Google Scholar 

  • Brovelli, A., Baechler, S., Rossi, L., Langergraber, G., & Barry, D. A. (2007). Coupled flow and hydro-geochemical modelling for design and optimization of horizontal flow constructed wetlands. In Ü. Mander, M. Kóiv, C. Vohla (Eds.), Proceedings international symposium on “Wetland pollutant dynamics and control WETPOL 2007” (pp. 393–395). Tartu, Estonia: Tartu University.

    Google Scholar 

  • Brovelli, A., Baechler, S., Rossi, L., & Barry, D. A. (2009a). Comprehensive process-based modelling of sand filters and subsurface flow constructed wetlands. In Proceedings of the 3rd international symposium on wetland pollutant dynamics and control (WETPOL 2009), Barcelona, Spain, 20–24 Sept 2009. Abstract n. P-018

    Google Scholar 

  • Brovelli, A., Malaguerra, F., & Barry, D. A. (2009b). Bioclogging in porous media: Model development and sensitivity to initial conditions. Environmental Modelling and Software, 24(5), 611–626.

    Article  Google Scholar 

  • Brovelli, A., Rossi, L., & Barry, D. A. (2009c). Mechanistic understanding and prediction of bioclogging in sand filters and subsurface flow constructed wetlands. In Proceedings of the 3rd international symposium on wetland pollutant dynamics and control (WETPOL 2009), Barcelona, Spain, 20–24 Sept 2009. Abstract n. O-051.

    Google Scholar 

  • Dittmer, U., & Schmitt, T. G. (2011). Purification Processes in Biofilter Systems for CSO Treatment. In: Proceedings 12th international conference on urban drainage, Porto Alegre, Brazil.

    Google Scholar 

  • Dittmer, U., Meyer, D., & Langergraber, G. (2005). Simulation of a subsurface vertical flow constructed wetland for CSO treatment. Water Science and Technology, 51(9), 225–232.

    CAS  Google Scholar 

  • Fan, L., Reti, H., Wang, W., Lu, Z., & Yang, Z. (2008). Application of computational fluid dynamic to model the hydraulic performance of subsurface flow wetlands. Journal of Environmental Sciences, 20(12), 1415–1422.

    Article  Google Scholar 

  • Galvão, A. F., Matos, J. S., Ferreira, F. S., & Correia, F. N. (2010). Simulating flows in horizontal subsurface flow constructed wetlands operating in Portugal. Ecological Engineering, 36(4), 596–600.

    Article  Google Scholar 

  • García, J., Chiva, J., Aguirre, P., Álvarez, E., Sierra, J., & Mujeriego, R. (2004a). Hydraulic behaviour of horizontal subsurface flow constructed wetlands with different aspect ratio and granular medium size. Ecological Engineering, 23(3), 177–187.

    Article  Google Scholar 

  • García, J., Aguirre, P., Mujeriego, R., Huang, Y., Ortiz, L., & Bayona, J. M. (2004b). Initial contaminant removal performance factors in horizontal flow reed beds used for treating urban wastewater. Water Research, 38, 1669–1678.

    Article  Google Scholar 

  • García, J., Rousseau, D. P. L., Morató, J., Lesage, E., Matamoros, V., & Bayona, J. M. (2010). Contaminant removal processes in subsurface-flow constructed wetlands: A review. Critical Reviews in Environmental Science and Technology, 40(7), 561–661.

    Article  Google Scholar 

  • Giraldi, D., de’ Michieli Vitturi, M., Zaramella, M., Marion, A., & Iannelli, R. (2009). Hydrodynamics of vertical subsurface flow constructed wetlands: Tracer tests with rhodamine WT and numerical modelling. Ecological Engineering, 35(2), 265–273.

    Article  Google Scholar 

  • Giraldi, D., de Michieli Vitturi, M., & Iannelli, R. (2010). FITOVERT: A dynamic numerical model of subsurface vertical flow constructed wetlands. Environmental Modelling and Software, 25(5), 633–640.

    Article  Google Scholar 

  • Goulet, R. (2001). Test of the first-order removal model for metal retention in a young constructed wetland. Ecological Engineering, 17(4), 357–371.

    Article  Google Scholar 

  • Gujer, W., & Boller, M. (1990). A mathematical model for rotating biological contactors. Water Science and Technology, 22, 53–73.

    CAS  Google Scholar 

  • Hafner, S., & Jewell, W. (2006). Predicting nitrogen and phosphorus removal in wetlands due to detritus accumulation: A simple mechanistic model. Ecological Engineering, 27(1), 13–21.

    Article  Google Scholar 

  • Henrichs, M., Langergraber, G., & Uhl, M. (2007). Modelling of organic matter degradation in constructed wetlands for treatment of combined sewer overflow. Science of the Total Environment, 380, 196–209.

    Article  CAS  Google Scholar 

  • Henrichs, M., Welker, A., & Uhl, M. (2009). Modelling of biofilters for ammonium reduction in combined sewer overflow. Water Science and Technology, 60(3), 825–831.

    Article  CAS  Google Scholar 

  • Henze, M., Gujer, W., Mino, T., & van Loosdrecht, M. C. M. (2000) Activated sludge models ASM1, ASM2, ASM2D and ASM3. IWA scientific and technical report 9. London: WA Publishing.

    Google Scholar 

  • Hijosa-Valsero, M., Sidrach-Cardona, R., Martín-Villacorta, J., Cruz Valsero-Blanco, M., Bayona, J. M., & Bécares, E. (2011). Statistical modelling of organic matter and emerging pollutants removal in constructed wetlands. Bioresource Technology, 102(8), 4981–4988.

    Article  CAS  Google Scholar 

  • Hua, G. F., Li, L., Zhao, Y. Q., Zhu, W., & Shen, J. Q. (2013). An integrated model of substrate clogging in vertical flow constructed wetlands. Journal of Environmental Management, 119, 67–75.

    Article  CAS  Google Scholar 

  • Iwasaki, I. (1937). Some notes on sand filtration. Journal of American Water Works Association, 29, 1591–1602.

    CAS  Google Scholar 

  • Knowles, P. R., & Davies, P. A. (2011). A finite element approach to modelling the hydrological regime in horizontal subsurface flow constructed wetlands for wastewater treatment. In J. Vymazal (Ed.), Water and nutrient management in natural and constructed wetlands (pp. 85–101). Dordrecht: Springer.

    Google Scholar 

  • Korkusuz, E. A., Meyer, D., & Langergraber, G. (2007). CW2D simulation results of lab-scale vertical flowfilters filled with special media and loaded with municipal wastewater. In Proceedings international symposium on “Wetland pollutant dynamics and control WETPOL 2007” (pp. 448–450).Tartu, Estonia:Tartu University.

    Google Scholar 

  • Kotti, I. P., Sylaios, G. K., & Tsihrintzis, V. A. (2013). Fuzzy logic models for BOD removal prediction in free-water surface constructed wetlands. Ecological Engineering, 51, 66–74.

    Article  Google Scholar 

  • Krone-Davis, P., Watson, F., Los Huertos, M., & Starner, K. (2013). Assessing pesticide reduction in constructed wetlands using a tanks-in-series model within a Bayesian framework. Ecological Engineering, 57, 342–352.

    Article  Google Scholar 

  • Kumar, J. L. G., & Zhao, Y. Q. (2011). A review on numerous modeling approaches for effective, economical and ecological treatment wetlands. Journal of Environmental Management, 92(3), 400–406.

    Article  CAS  Google Scholar 

  • Langergraber, G. (2001). Development of a simulation tool for subsurface flow constructed wetlands (Wiener Mitteilungen 169, 207p.). Vienna. ISBN 3-85234-060-8.

    Google Scholar 

  • Langergraber, G. (2005). The role of plant uptake on the removal of organic matter and nutrients in subsurface flow constructed wetlands: A simulation study. Water Science and Technology, 51(9), 213–223.

    CAS  Google Scholar 

  • Langergraber, G. (2007). Simulation of the treatment performance of outdoor subsurface flow constructed wetlands in temperate climates. The Science of the Total Environment, 380(1–3), 210–219.

    Article  CAS  Google Scholar 

  • Langergraber, G. (2008). Modeling of processes in subsurface flow constructed wetlands: A review. Vadose Zone Journal, 7(2), 830–842.

    Article  Google Scholar 

  • Langergraber, G. (2010). Water and nutrient management in natural and constructed wetlands. In J. Vymazal (Ed.), Process based models for subsurface flow constructed wetlands (pp. 21–36). Dordrecht: Springer.

    Google Scholar 

  • Langergraber, G., & Šimůnek, J. (2005). Modeling variably saturated water flow and multicomponent reactive transport in constructed wetlands. Vadose Zone Journal, 4(4), 924.

    Article  CAS  Google Scholar 

  • Langergraber, G., & Šimůnek, J. (2012) Reactive transport modeling of subsurface flow constructed wetlands using HYDRUS Wetland Module. Vadose Zone Journal 11(2). Special Issue Reactive Transport Modeling.

    Google Scholar 

  • Langergraber, G., Rousseau, D. P. L., García, J., & Mena, J. (2009a). CWM1: A general model to describe biokinetic processes in subsurface flow constructed wetlands. Water Science and Technology, 59(9), 1687–1697.

    Article  CAS  Google Scholar 

  • Langergraber, G., Giraldi, D., Mena, J., Meyer, D., Peña, M., Toscano, A., Brovelli, A., & Korkusuz, E. A. (2009b). Recent developments in numerical modelling of subsurface flow constructed wetlands. The Science of the Total Environment, 407(13), 3931–3943.

    Article  CAS  Google Scholar 

  • Lee, B.-H., & Scholz, M. (2006). Application of self-organizing map (SOM) to assess the heavy metal removal performance in experimental constructed wetlands. Water Research, 40, 3367–3374.

    Article  CAS  Google Scholar 

  • Liolios, K. A., Moutsopoulos, K. N., & Tsihrintzis, V. A. (2012). Modeling of flow and BOD fate in horizontal subsurface flow constructed wetlands. Chemical Engineering Journal, 200–202, 681–693.

    Article  Google Scholar 

  • Llorens, E., Saaltink, M. W., Poch, M., & García, J. (2011a). Bacterial transformation and biodegradation processes simulation in horizontal subsurface flow constructed wetlands using CWM1-RETRASO. Bioresource Technology, 102, 928–936.

    Article  CAS  Google Scholar 

  • Llorens, E., Saaltink, M. W., & García, J. (2011b). CWM1 implementation in RetrasoCodeBright: First results using horizontal subsurface flow constructed wetland data. Chemical Engineering Journal, 166(1), 224–232.

    Article  CAS  Google Scholar 

  • Llorens, E., Obradors, J., Alarcón-Herrera, M. T., & Poch, M. (2013). Modelling of arsenic retention in constructed wetlands. Bioresource Technology, 147C, 221–227.

    Article  Google Scholar 

  • Lloyd, J. R., Klessa, D. A., Parry, D. L., Buck, P., & Brown, N. L. (2004). Stimulation of microbial sulfate reduction in a constructed wetland: Microbiological and geochemical analysis. Water Research, 38, 1822–1830.

    Article  CAS  Google Scholar 

  • Mao, X., Prommer, H., Barry, D., Langevin, C., Panteleit, B., & Li, L. (2006). Three-dimensional model for multi-component reactive transport with variable density groundwater flow. Environmental Modelling and Software, 21(5), 615–628.

    Article  Google Scholar 

  • Maurer, M., & Rittmann, B. E. (2004). Modeling intrinsic bioremediation to interpret observable biogeochemical footprints of BTEX biodegradation: mathematical modeling and examples. Biodegradation, 15, 419–434.

    Article  CAS  Google Scholar 

  • Mayo, A. W., & Bigambo, T. (2005). Nitrogen transformation in horizontal subsurface flow constructed wetlands I: Model development. Physics and Chemistry of the Earth, Parts A/B/C, 30(11–16), 658–667.

    Article  Google Scholar 

  • Mburu, N., Sanchez-Ramos, D., Rousseau, D. P. L., van Bruggen, J. J. A., Thumbi, G., Stein, O. R., Hook, P. B., & Lens, P. N. L. (2012). Simulation of carbon, nitrogen and sulphur conversion in batch-operated experimental wetland mesocosms. Ecological Engineering, 42, 304–315.

    Article  Google Scholar 

  • Mburu, N., Rousseau, D. P. L., van Bruggen, J. J. A., Thumbi, G., Llorens, E., García, J., & Lens, P. N. L. (2013). Reactive transport simulation in a tropical horizontal subsurface flow constructed wetland treating domestic wastewater. Science of the Total Environment, 449, 309–319.

    Article  CAS  Google Scholar 

  • McBride, G. B., & Tanner, C. C. (2000). Modelling biofilm nitrogen transformations in constructed wetland mesocosms with fluctuating water levels. Ecological Engineering, 14, 93–106.

    Article  Google Scholar 

  • McDonald, M., & Harbaugh, A. (1988). A modular three-dimensional finite-difference ground-water flow model. Reston: U.S Geological Survey.

    Google Scholar 

  • Meyer, D. (2011). Modellierung und Simulation von Retentionsbodenfiltern zur weitergehenden Mischwasserbehandlung (Modelling and simulation of constructed wetlands for enhanced combined sewer overflow treatment). PhD thesis, Institute of Urban Water Management, Technical University of Kaiserslautern, Germany.

    Google Scholar 

  • Meyer, D., Langergraber, G., & Dittmer, U. (2006). Simulation of sorption processes in vertical flow constructed wetlands for CSO treatment. In Proceedings 10th international conference on wetland systems for water pollution control (pp. 599–609). Lisbon, Portugal: MAOTDR.

    Google Scholar 

  • Meyer, D., Molle, P., Esser, D., Troesch, S., Masi, F., & Dittmer, U. (2013). Constructed wetlands for combined sewer overflow treatment – Comparison of German, French and Italian approaches. Water, 5, 1–12.

    Article  CAS  Google Scholar 

  • Meyer, D., Chazarenc, F., Claveau-Mallet, D., Dittmer, U., Forquet, N., Molle, P., Morvannou, A., Pálfy, T., Petitjean, A., Rizzo, A., Samsó, R., Scholz, M., Soric, A., Langergraber, G. (in press). Modelling constructed wetlands: Scopes and aims – A review. Ecological Engineering.

    Google Scholar 

  • Mitsch, W. J., & Wise, K. M. (1998). Water quality, fate of metals, and predictive model validation of a constructed wetland treating acid mine drainage. Water Research, 32(6), 1888–1900.

    Article  CAS  Google Scholar 

  • Morvannou, A., Forquet, N., Vanclooster, M., & Molle, P. (2013). Which hydraulic model to use in vertical flow constructed wetlands? In J. Šimůnek & R. Kodešová (Eds.), Proceedings of the 4th international conference HYDRUS software applications to subsurface flow and contaminated transport problems (p. 74). Prague, Czech Republic: Czech University of Life Sciences Prague.

    Google Scholar 

  • Moutsopoulos, K. N., Poultsidis, V. G., Papaspyros, J. N. E., & Tsihrintzis, V. A. (2011). Simulation of hydrodynamics and nitrogen transformation processes in HSF constructed wetlands and porous media using the advection–dispersion-reaction equation with linear sink-source terms. Ecological Engineering, 37, 1407–1415.

    Article  Google Scholar 

  • Ojeda, E., Caldentey, J., Saaltink, M., & García, J. (2008). Evaluation of relative importance of different microbial reactions on organic matter removal in horizontal subsurface-flow constructed wetlands using a 2D simulation model. Ecological Engineering, 34(1), 65–75.

    Article  Google Scholar 

  • Pálfy, T. G., & Langergraber, G. (2013). Simulation of constructed wetland microcosms using the HYDRUS wetland module. In Proceedings 5th international symposium on “Wetland pollutant dynamics and control WETPOL 2013” (pp. 178–179). 13–17 Oct 2013, Nantes, France.

    Google Scholar 

  • Parkhurst, D. L., & Appelo, C. A. J. (1999). User’s guide to PHREEQC (version 2)–A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations: U.S. Geological Survey Water-Resources Investigations Report 99–4259, 312 pp.

    Google Scholar 

  • Reichert, P. (1998). AQUASIM 2.0—User manual computer program for the identification and simulation of aquatic systems. Swiss Federal Institute for Environmental Science and Technology (EAWAG), CH-8600 Dubendorf, Switzerland.

    Google Scholar 

  • Rolle, M., Clement, T. P., Sethi, R., & Molfetta, A. D. (2008). A kinetic approach for simulating redox-controlled fringe and core biodegradation processes in groundwater: Model development and application to a landfill site in Piedmont, Italy. Hydrological Processes, 4921(September), 4905–4921.

    Article  Google Scholar 

  • Rousseau, D. P. L., Vanrolleghem, P. A., & De Pauw, N. (2004). Model-based design of horizontal subsurface flow constructed treatment wetlands: A review. Water Research, 38(6), 1484–1493.

    Article  CAS  Google Scholar 

  • Saaltink, M. W., Ayora, J., Stuyfzand, P. J., & Timmer, H. (2003). Analysis of a deep well recharge experiment by calibrating a reactive transport model with field data. Journal of Contaminant Hydrology, 65(1–2), 1–18.

    Article  CAS  Google Scholar 

  • Saaltink, M. W., Batlle, F., Ayora, C., Carrera, J., & Olivella, S. (2004). RETRASO, a code for modeling reactive transport in saturated and unsaturated porous media. Geologica Acta, 2(3), 235–251.

    CAS  Google Scholar 

  • Samsó, R., & García, J. (2013a). BIO_PORE, a mathematical model to simulate biofilm growth and water quality improvement in porous media: Application and calibration for constructed wetlands. Ecological Engineering, 54, 116–127.

    Article  Google Scholar 

  • Samsó, R., & García, J. (2013b). Bacteria distribution and dynamics in constructed wetlands based on modelling results. Science of the Total Environment, 461–462, 430–440.

    Article  Google Scholar 

  • Šimůnek, J., Sejna, M., & van Genuchten M. Th. (1999). The HYDRUS-2D software package for simulating two-dimensional movement of water, heat, and multiple salutes in variably saturated media, version 2.0. Manual, U.S. Salinity Laboratory, USDA, ARS, Riverside, CA, USA.

    Google Scholar 

  • Stein, O. R., Biederman, J. A., Hook, P. B., & Allen, C. (2006). Plant species and tempera- ture effects on the k-C* first-order model for COD removal in batch-loaded SSF wetlands. Ecological Engineering, 26(2), 100–112.

    Article  Google Scholar 

  • Suliman, F., French, H. K., Haugen, L. E., & Søvik, A. K. (2006). Change in flow and transport patterns in horizontal subsurface flow constructed wetlands as a result of biological growth. Ecological Engineering, 27, 124–133.

    Article  Google Scholar 

  • Toscano, A., Langergraber, G., Consoli, S., & Cirelli, G. L. (2009). Modelling pollutant removal in a pilot-scale two-stage subsurface flow constructed wetlands. Ecological Engineering, 35, 281–289.

    Article  Google Scholar 

  • van Genuchten, M. T. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal, 44, 892–898.

    Article  Google Scholar 

  • Zheng, C., & Wang, P. (1999). MT3DMS, a modular three-dimensional multi-species transport model for simulation of advection, dispersion and chemical reactions of contaminants in ground-water systems; Documentation and User’s Guide. U.S. Army Engineer Research and Development Center, USA.

    Google Scholar 

Download references

Acknowledgements

The authors are also grateful to the European Commission for the financial support of the SWINGS project (Grant Agreement No.: 308502).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joan García .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Samsó, R., Meyer, D., García, J. (2015). Subsurface Flow Constructed Wetland Models: Review and Prospects. In: Vymazal, J. (eds) The Role of Natural and Constructed Wetlands in Nutrient Cycling and Retention on the Landscape. Springer, Cham. https://doi.org/10.1007/978-3-319-08177-9_11

Download citation

Publish with us

Policies and ethics