Skip to main content

Adaptive Wavelet Methods for SPDEs

  • Chapter
  • First Online:
Extraction of Quantifiable Information from Complex Systems

Abstract

We review a series of results that have been obtained in the context of the DFG-SPP 1324 project “Adaptive wavelet methods for SPDEs”. This project has been concerned with the construction and analysis of adaptive wavelet methods for second order parabolic stochastic partial differential equations on bounded, possibly nonsmooth domains \(\mathcal{O}\subset \mathbb{R}^{d}\). A detailed regularity analysis for the solution process u in the scale of Besov spaces \(B_{\tau,\tau }^{s}(\mathcal{O})\), 1∕τ = sd + 1∕p, α > 0, p ≥ 2, is presented. The regularity in this scale is known to determine the order of convergence that can be achieved by adaptive wavelet algorithms and other nonlinear approximation schemes. As it turns out, in general, for solutions of SPDEs this regularity exceeds the \(L_{p}(\mathcal{O})\)-Sobolev regularity, which determines the order of convergence for uniform approximation schemes. We also study nonlinear wavelet approximation of elliptic boundary value problems on \(\mathcal{O}\) with random right-hand side. Such problems appear naturally when applying Rothe’s method to the parabolic stochastic equation. A general stochastic wavelet model for the right-hand side is introduced and its Besov regularity as well as linear and nonlinear approximation is studied. The results are matched by computational experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abramovich, F., Sapatinas, T., Silverman, B.W.: Wavelet thresholding via a Bayesian approach. J. R. Stat. Soc., Ser. B, Stat. Methodol. 60, 725–749 (1998)

    Google Scholar 

  2. Bochkina, N.: Besov regularity of functions with sparse random wavelet coefficients (2006, unpublished preprint). arXiv:1310.3720

    Google Scholar 

  3. Canuto, C., Tabacco, A., Urban, K.: The wavelet element method. I: construction and analysis. Appl. Comput. Harmon. Anal. 6, 1–52 (1999)

    MATH  MathSciNet  Google Scholar 

  4. Cioica, P.A., Dahlke, S.: Spatial Besov regularity for semilinear stochastic partial differential equations on bounded Lipschitz domains. Int. J. Comput. Math. 89, 2443–2459 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cioica, P.A., Dahlke, S., Döhring, N., Friedrich, U., Kinzel, S., Lindner, F., Raasch, T., Ritter, K., Schilling, R.L.: On the convergence analysis of Rothe’s method, DFG-SPP 1324. 124 (2012, preprint)

    Google Scholar 

  6. Cioica, P.A., Dahlke, S., Döhring, N., Friedrich, U., Kinzel, S., Lindner, F., Raasch, T., Ritter, K., Schilling, R.L.: Convergence analysis of spatially adaptive Rothe methods. Found. Comput. Math. (2014). doi: 10.1007/s10208-013-9183-7

    Google Scholar 

  7. Cioica, P.A., Dahlke, S., Döhring, N., Kinzel, S., Lindner, F.,Raasch, T., Ritter K., Schilling, R.L.: Adaptive wavelet methods for the stochastic Poisson equation. BIT 52, 589–614 (2011)

    Article  Google Scholar 

  8. Cioica, P.A., Dahlke, S., Kinzel, S., Lindner, F., Raasch, T., Ritter, K., Schilling, R.L.: Spatial Besov regularity for stochastic partial differential equations on Lipschitz domains. Studia Math. 207, 197–234 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cioica, P.A., Kim, K.-H., Lee, K., Lindner, F.: On the L q (L p )-regularity and Besov smoothness of stochastic parabolic equations on bounded Lipschitz domains. Electron. J. Probab. 18, 1–41 (2013)

    Article  MathSciNet  Google Scholar 

  10. Cohen, A.: Numerical Analysis of Wavelet Methods. Studies in Mathematics Applications, vol. 32, 1st edn. Elsevier, Amsterdam (2003)

    Google Scholar 

  11. Cohen, A., Dahmen, W., DeVore, R.A.: Adaptive wavelet methods for elliptic operator equations: convergence rates. Math. Comput. 70, 27–75 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cohen, A., Dahmen, W., DeVore, R.A.: Adaptive wavelet methods II: beyond the elliptic case. Found. Comput. Math. 2, 203–245 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  13. Dahlke, S., Dahmen, W., DeVore, R.A.: Nonlinear approximation and adaptive techniques for solving elliptic operator equations. In: Multiscale Wavelet Methods for Partial Differential Equations, pp. 237–284. Academic, San Diego (1997)

    Google Scholar 

  14. Dahlke, S., DeVore, R.A.: Besov regularity for elliptic boundary value problems. Commun. Partial Differ. Equ. 22, 1–16 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dahmen, W., Kunoth, A., Urban, K.: Biorthogonal spline wavelets on the interval – stability and moment conditions. Appl. Comput. Harmon. Anal. 6, 132–196 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  16. Dahmen, W., Schneider, R.: Composite wavelet bases for operator equations. Math. Comput. 68, 1533–1567 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  17. Dahmen, W., Schneider, R.: Wavelets on manifolds I: construction and domain decomposition. SIAM J. Math. Anal. 31, 184–230 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  18. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and Its Applications, vol. 44. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  19. DeVore, R.A.: Nonlinear approximation. Acta Numer. 8, 51–150 (1998)

    Article  MathSciNet  Google Scholar 

  20. Fujiwara, D.: Concrete characterization of the domains of fractional powers of some elliptic differential operators of the second order. Proc. Jpn. Acad. 43, 82–86 (1967)

    Article  MATH  Google Scholar 

  21. Gyöngy, I., Millet, A.: Rate of convergence of space time approximations for stochastic evolution equations. Potential Anal. 30, 29–64 (2008)

    Article  Google Scholar 

  22. Kim, K.-H.: On stochastic partial differential equations with variable coefficients in C 1 domains. Stoch. Proc. Appl. 112, 261–283 (2004)

    Article  MATH  Google Scholar 

  23. Kim, K.-H.: A weighted Sobolev space theory of parabolic stochastic PDEs on non-smooth domains. J. Theor. Probab. 27, 107–136 (2014)

    Article  MATH  Google Scholar 

  24. Kovács, M., Larsson, S., Lindgren, F.: Spatial approximation of stochastic convolutions. J. Comput. Appl. Math. 235, 3554–3570 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  25. Kovács, M., Larsson, S., Urban, K.: On Wavelet-Galerkin Methods for Semilinear Parabolic Equations with Additive Noise. Springer Proceedings in Mathematics and Statistics, vol. 65, pp. 481–499. Springer, Berlin (2013)

    Google Scholar 

  26. Krylov, N.V.: A W 2 n-theory of the Dirichlet problem for SPDEs in general smooth domains. Probab. Theory Relat. Fields. 98, 389–421 (1994)

    Article  MATH  Google Scholar 

  27. Krylov, N.V.: An analytic approach to SPDEs. In: Carmona, R., Rozovskii, B.L. (eds.) Stochastic Partial Differential Equations: Six Perspectives, pp. 185–242. American Mathematical Society, Providence, RI (1999)

    Google Scholar 

  28. Krylov, N.V.: SPDEs in L q ((0, τ], L p ) spaces. Electron. J. Probab. 5, 1–29 (2000)

    Article  MathSciNet  Google Scholar 

  29. Krylov, N.V.: Some properties of traces for stochastic and deterministic parabolic weighted Sobolev spaces. J. Funct. Anal. 183, 1–41 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  30. Krylov, N.V., Lototsky, S.V.: A Sobolev space theory of SPDE with constant coefficients on a half line. SIAM J. Math. Anal. 30, 298–325 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  31. Krylov, N.V., Lototsky, S.V.: A Sobolev space theory of SPDEs with constant coefficients in a half space. SIAM J. Math. Anal. 31, 19–33 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  32. Lindner, F.: Singular behavior of the solution to the stochastic heat equation on polygonal domain. Stoch. PDE: Anal. Comp. (2014). doi:10.1007/s40072-014-0030-x

    Google Scholar 

  33. Lototsky, S.V.: Sobolev spaces with weights in domains and boundary value problems for degenerate elliptic equations. Methods Appl. Anal. 7, 195–204 (2000)

    MATH  MathSciNet  Google Scholar 

  34. Müller-Gronbach, T., Ritter, K.: An implicit Euler scheme with non-uniform time discretization for heat equations with multiplicative noise. BIT 47, 393–418 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  35. Primbs, M.: New stable biorthogonal spline-wavelets on the interval. Results Math. 57, 121–162 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  36. van Neerven, J., Veraar, M.C., Weis, L.: Maximal L p-regularity for stochastic evolution equations. SIAM J. Math. Anal. 44, 1372–1414 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  37. Wood, I.: Maximal L p -regularity for the Laplacian on Lipschitz domains. Math. Z. 255, 855–875 (2007)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to René L. Schilling .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Cioica, P.A. et al. (2014). Adaptive Wavelet Methods for SPDEs. In: Dahlke, S., et al. Extraction of Quantifiable Information from Complex Systems. Lecture Notes in Computational Science and Engineering, vol 102. Springer, Cham. https://doi.org/10.1007/978-3-319-08159-5_5

Download citation

Publish with us

Policies and ethics