Application of Neural Networks for the Classification of Gender from Kick Force Profile – A Small Scale Study

  • Dora Lapkova
  • Michal Pluhacek
  • Zuzana Komínková Oplatková
  • Roman Senkerik
  • Milan Adamek
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 303)

Abstract

The possibility of using artificial neural network for person gender classification based on kick force profile is investigated in this paper. The input data are transformed using discrete cosine transformation for easier classification. Extensive tuning is performed on the proposed artificial neural network to obtain better results. This preliminary study sums up foundations for future large-scale studies.

Keywords

Professional defense Kick techniques Direct kick Round kick gender classification neural network DCT 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Liu, P., et al.: A kinematic analysis of round kick in Taekwondo. In: ISBS-Conference Proceedings Archive, vol. 1(1) (2000)Google Scholar
  2. 2.
    Pieter, F., Pieter, W.: Speed and force in selected taekwondo techniques. Biology of Sport 12, 257–266 (1995)Google Scholar
  3. 3.
    Lapkova, D., Pospisilik, M., Adamek, M., Malanik, Z.: The utilisation of an impulse of force in self-defence. In: XX IMEKO World Congress: Metrology for Green Growth, Busan, Republic of Korea (2012) ISBN: 978-89-950000-5-2Google Scholar
  4. 4.
    Fausett, L.V.: Fundamentals of Neural Networks: Architectures, Algorithms and Applications. Prentice Hall (1993) ISBN: 9780133341867Google Scholar
  5. 5.
    Gurney, K.: An Introduction to Neural Networks. CRC Press (1997) ISBN: 1857285034Google Scholar
  6. 6.
    Hertz, J., Kogh, A., Palmer, R.G.: Introduction to the Theory of Neural Computation. Addison – Wesley (1991)Google Scholar
  7. 7.
    Wasserman, P.D.: Neural Computing: Theory and Practice. Coriolis Group (1980) ISBN: 0442207433Google Scholar
  8. 8.
    Wen-Hsiung, C., Smith, C., Fralick, S.: A Fast Computational Algorithm for the Discrete Cosine Transform. IEEE Transactions on Communications 25(9), 1004–1009 (1977)CrossRefMATHGoogle Scholar
  9. 9.
    Makhoul, J.: A fast cosine transform in one and two dimensions. IEEE Transactions on Acoustics, Speech, and Signal Processing 28(1), 27–34 (1980)CrossRefMATHMathSciNetGoogle Scholar
  10. 10.
    Volna, E., Janosek, M., Kotyrba, M., Kocian, V.: Pattern recognition algorithm optimization. In: Zelinka, I., Snasel, V., Rössler, O.E., Abraham, A., Corchado, E.S. (eds.) Nostradamus: Mod. Meth. of Prediction, Modeling. AISC, vol. 192, pp. 251–260. Springer, Heidelberg (2013), doi:10.1007/978-3-642-33227-2.Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Dora Lapkova
    • 1
  • Michal Pluhacek
    • 1
  • Zuzana Komínková Oplatková
    • 1
  • Roman Senkerik
    • 1
  • Milan Adamek
    • 1
  1. 1.Faculty of Applied InformaticsTomas Bata University in ZlinZlinCzech Republic

Personalised recommendations