Comparison of Local and Global Ranking in Networks

  • Šárka Zehnalová
  • Miloš Kudělka
  • Zdeněk Horák
  • Pavel Krömer
  • Václav Snášel
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 303)


Many real world data and processes have a network structure and can usefully be represented as graphs. Network analysis focuses on the relations among the nodes exploring the properties of each network. Latest trend in analyzing networks is to focus on local methods and parallelization. We introduce a method to find the ranking of the nodes. The approach extracts dependency relations among the network’s nodes. Key technical parameter of the approach is locality. Since only the surrounding of examined nodes is used in computations, there is no need to analyze the entire network. We compare this proposed local ranking to the global ranking of PageRank. We present experiment using large-scale artificial and real world networks. The results of experiment show high effectiveness due to the locality of our approach and also high quality of node ranking comparable to PageRank.


complex networks graphs node weighting dependency ranking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abdallah, S.: Generalizing unweighted network measures to capture the focus in interactions. Social Network Analysis and Mining 1(4), 255–269 (2011)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Barabási, A.L., Frangos, J.: Linked: The New Science of Networks Science of Networks. Basic Books (2002)Google Scholar
  3. 3.
    Barrat, A., Barthelemy, M., Pastor-Satorras, R., Vespignani, A.: The architecture of complex weighted networks. Proceedings of the National Academy of Sciences of the United States of America 101(11), 3747–3752 (2004)CrossRefGoogle Scholar
  4. 4.
    Brin, S., Page, L.: The anatomy of a large-scale hypertextual web search engine. In: Proceedings of the Seventh International Conference on World Wide Web (1998)Google Scholar
  5. 5.
    Christensen, D.: Fast algorithms for the calculation of kendalls τ. Computational Statistics 20(1), 51–62 (2005)CrossRefMATHMathSciNetGoogle Scholar
  6. 6.
    Farkas, I., Ábel, D., Palla, G., Vicsek, T.: Weighted network modules. New Journal of Physics 9(6), 180 (2007)CrossRefGoogle Scholar
  7. 7.
    Freeman, L.C.: Centrality in social networks conceptual clarification. Social Networks 1(3), 215–239 (1979)CrossRefGoogle Scholar
  8. 8.
    Heckerman, D., Chickering, D.M., Meek, C., Rounthwaite, R., Kadie, C.: Dependency networks for inference, collaborative filtering, and data visualization. The Journal of Machine Learning Research 1, 49–75 (2001)MATHGoogle Scholar
  9. 9.
    Kenett, D.Y., Tumminello, M., Madi, A., Gur-Gershgoren, G., Mantegna, R.N., Ben-Jacob, E.: Dominating clasp of the financial sector revealed by partial correlation analysis of the stock market. PLoS One 5(12), e15032 (2010)Google Scholar
  10. 10.
    Kleinberg, J.M.: Hubs, authorities, and communities. ACM Computing Surveys (CSUR) 31(4es), 5 (1999)CrossRefGoogle Scholar
  11. 11.
    Kudělka, M., Horák, Z., Snášel, V., Krömer, P., Platoš, J., Abraham, A.: Social and swarm aspects of co-authorship network. Logic Journal of IGPL 20(3), 634–643 (2012)CrossRefGoogle Scholar
  12. 12.
    Langville, A.N., Meyer, C.D.: Google’s PageRank and Beyond: The Science of Search Engine Rankings. Princeton University Press, Princeton (2006)Google Scholar
  13. 13.
    Leenders, R.T.A.: Modeling social influence through network autocorrelation: constructing the weight matrix. Social Networks 24(1), 21–47 (2002)CrossRefGoogle Scholar
  14. 14.
    Nitzberg, B., Schopf, J., Jones, J.: Pbs pro: Grid computing and scheduling attributes. In: Nabrzyski, J., Schopf, J., Wglarz, J. (eds.) Grid Resource Management. International Series in Operations Research and Management Science, vol. 64, pp. 183–190. Springer, US (2004)CrossRefGoogle Scholar
  15. 15.
    Opsahl, T., Agneessens, F., Skvoretz, J.: Node centrality in weighted networks: Generalizing degree and shortest paths. Social Networks 32(3), 245–251 (2010)CrossRefGoogle Scholar
  16. 16.
    Opsahl, T., Panzarasa, P.: Clustering in weighted networks. Social Networks 31(2), 155–163 (2009)CrossRefGoogle Scholar
  17. 17.
    White, S., Smyth, P.: Algorithms for estimating relative importance in networks. In: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 266–275. ACM (2003)Google Scholar
  18. 18.
    Wiedermann, M., Donges, J.F., Heitzig, J., Kurths, J.: Node-weighted interacting network measures improve the representation of real-world complex systems. EPL (Europhysics Letters) 102(2), 28007 (2013)CrossRefGoogle Scholar
  19. 19.
    Witten, I.H., Gori, M., Numerico, T.: Web Dragons: Inside the Myths of Search Engine Technology. Morgan Kaufmann (2006)Google Scholar
  20. 20.
    Zehnalova, S., Horak, Z., Kudelka, M., Snael, V.: Local dependency in networks. In: 2013 5th International Conference on Intelligent Networking and Collaborative Systems (INCoS), pp. 250–254. IEEE (2013)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Šárka Zehnalová
    • 1
  • Miloš Kudělka
    • 1
  • Zdeněk Horák
    • 2
  • Pavel Krömer
    • 1
  • Václav Snášel
    • 1
  1. 1.VSB - Technical University of OstravaOstravaCzech Republic
  2. 2.Inflex, s.r.o.OstravaCzech Republic

Personalised recommendations