Advertisement

Dimensionality Reduction and Prediction of the Protein Macromolecule Dissolution Profile

  • Varun Kumar Ojha
  • Konrad Jackowski
  • Václav Snášel
  • Ajith Abraham
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 303)

Abstract

A suitable regression model for predicting the dissolution profile of Poly (lactic-co-glycolic acid) (PLGA) micro- and nanoparticles can play a significant role in pharmaceutical/medical applications. The rate of dissolution of proteins is influenced by several factors and taking all such influencing factors into account, we have a dataset in hand with three hundred input features. Therefore, a primary approach before identifying a regression model is to reduce the dimensionality of the dataset at hand. On the one hand, we have adopted Backward Elimination Feature selection techniques for an exhaustive analysis of the predictability of each combination of features. On the other hand, several linear and non-linear feature extraction methods are used in order to extract a new set of features out of the available dataset. A comprehensive experimental analysis for the selection or extraction of features and identification of corresponding prediction model is offered. The designed experiment and prediction models offers substantially better performance over the earlier proposed prediction models in literature for the said problem.

Keywords

Dimension reduction Feature selection Feature extraction Regression PLGA 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Astete, C.E., Sabliov, C.M.: Synthesis and characterization of plga nanoparticles. Journal of Biomaterials Science, Polymer Edition 17(3), 247–289 (2006)CrossRefGoogle Scholar
  2. 2.
    Szlkek, J., Paclawski, A., Lau, R., Jachowicz, R., Mendyk, A.: Heuristic modeling of macromolecule release from plga microspheres. International Journal of Nanomedicine 8, 4601 (2013)Google Scholar
  3. 3.
    Fredenberg, S., Wahlgren, M., Reslow, M., Axelsson, A.: The mechanisms of drug release in poly (lactic-co-glycolic acid)-based drug delivery systems–a review. International Journal of Pharmaceutics 415(1), 34–52 (2011)CrossRefGoogle Scholar
  4. 4.
    Kang, J., Schwendeman, S.P.: Pore closing and opening in biodegradable polymers and their effect on the controlled release of proteins. Molecular Pharmaceutics 4(1), 104–118 (2007)CrossRefGoogle Scholar
  5. 5.
    Kang, J., Lambert, O., Ausborn, M., Schwendeman, S.P.: Stability of proteins encapsulated in injectable and biodegradable poly (lactide-co-glycolide)-glucose millicylinders. International Journal of Pharmaceutics 357(1), 235–243 (2008)CrossRefGoogle Scholar
  6. 6.
    Blanco, M., Alonso, M.: Development and characterization of protein-loaded poly (lactide-co-glycolide) nanospheres. European Journal of Pharmaceutics and Biopharmaceutics 43(3), 287–294 (1997)CrossRefGoogle Scholar
  7. 7.
    Mainardes, R.M., Evangelista, R.C.: Plga nanoparticles containing praziquantel: effect of formulation variables on size distribution. International Journal of Pharmaceutics 290(1), 137–144 (2005)CrossRefGoogle Scholar
  8. 8.
    Zygourakis, K., Markenscoff, P.A.: Computer-aided design of bioerodible devices with optimal release characteristics: a cellular automata approach. Biomaterials 17(2), 125–135 (1996)CrossRefGoogle Scholar
  9. 9.
    Gopferich, A.: Mechanisms of polymer degradation and erosion. Biomaterials 17(2), 103–114 (1996)CrossRefGoogle Scholar
  10. 10.
    Siepmann, J., Faisant, N., Benoit, J.P.: A new mathematical model quantifying drug release from bioerodible microparticles using monte carlo simulations. Pharmaceutical Research 19(12), 1885–1893 (2002)CrossRefGoogle Scholar
  11. 11.
    van der Maaten, L.J., Postma, E.O., van den Herik, H.J.: Dimensionality reduction: A comparative review. Journal of Machine Learning Research 10(1-41), 66–71 (2009)Google Scholar
  12. 12.
    Hyvarinen, A., Oja, E.: Independent component analysis: algorithms and applications. Neural Networks 13(4), 411–430 (2000)CrossRefGoogle Scholar
  13. 13.
    Hyvarinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10(3), 626–634 (1999)CrossRefGoogle Scholar
  14. 14.
    Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press (2005)Google Scholar
  15. 15.
    Rasmussen, C.E., Nickisch, H.: Gaussian processes for machine learning (gpml) toolbox. The Journal of Machine Learning Research 9999, 3011–3015 (2010)MathSciNetGoogle Scholar
  16. 16.
    Haykin, S.: Neural Networks: A Comprehensive Foundation, 1st edn. Prentice Hall PTR, Upper Saddle River (1994)zbMATHGoogle Scholar
  17. 17.
    Werbos, P.J.: Beyond regression: New tools for prediction and analysis in the behavioral sciences (1975)Google Scholar
  18. 18.
    Rumelhart, D.E., McClelland, J.L.: Parallel distributed processing: explorations in the microstructure of cognition. foundations, vol. 1 (1986)Google Scholar
  19. 19.
    Riedmiller, M., Braun, H.: A direct adaptive method for faster backpropagation learning: The rprop algorithm. In: IEEE International Conference on Neural Networks, 1993, pp. 586–591. IEEE (1993)Google Scholar
  20. 20.
    Smola, A.J., Scholkopf, B.: Learning with kernels. Citeseer (1998)Google Scholar
  21. 21.
    Smola, A.J., Schollkopf, B.: A tutorial on support vector regression. Statistics and Computing 14(3), 199–222 (2004)CrossRefMathSciNetGoogle Scholar
  22. 22.
    Scholkopf, B., Burges, C.J., Smola, A.J.: Advances in kernel methods: support vector learning. MIT Press (1999)Google Scholar
  23. 23.
    Platt, J.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Advances in Large Margin Classifiers 10(3), 61–74 (1999)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Varun Kumar Ojha
    • 1
  • Konrad Jackowski
    • 1
  • Václav Snášel
    • 1
  • Ajith Abraham
    • 1
  1. 1.IT4InnovationsVŠB Technical University of OstravaOstravaCzech Republic

Personalised recommendations