Selection of Nodes and Sensors for Monitoring of Air Pollutants Related to City Traffic

  • Vendula Hejlová
  • Vít Voženílek
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 303)


Air pollution is a serious problem all around the world. One of the largest producers of air pollutants is city traffic. Several pollutants are usually monitored and analysed in stationary stations. Nowadays the ICT development alllows to observe them by various technologies, mainly by wireless sensor networks. Wireless nodes equipped by sensors are small sophisticated devices which can be distributed either in internal or external environment and which can obtain data about selected variables. The selection of wireless nodes and sensors is a crucial decision process which has to be considered at the beginning of wireless sensor network design. This paper introduces a set of criteria for selection of nodes and sensors of wireless sensor networks for monitoring of air pollutants related to city traffic. The selection process is based on defining of eight groups of criteria with determined weight values. The optimal parametres of criteria for wireless sensor network are defined and argued. The final selection analysis determines the most suitable option for air pollutants monitoring related to city traffic from the offered options.


Wireless Node Sensor Air Pollution City Traffic Selection Analysis 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Voženílek, V.: Radon Risk Assessment in GIS. In: Kolejka, J. (ed.) Role of GIS in Lifting the Cloud off Chernobyl. NATO Science Series IV Earth and Environmental Sciences, vol. 10, pp. 97–107 (2002)Google Scholar
  2. 2.
  3. 3.
    Murthy, C.S., Manoj, B.S.: Ad hoc wireless networks: architectures and protocols. Prentice-Hall, Upper Saddle River (2004)Google Scholar
  4. 4.
  5. 5.
    EPA: Particulate matter,
  6. 6.
    EPA: Sources of Greenhouse Gas Emissions,
  7. 7.
    Bielsa, A.: Smart city project in Salamanca to monitor air quality and urban traffic with Wasp mote, Libelium, Spain,
  8. 8.
    Asín, A.: Sensor network to monitor air pollution in the cities, Libelium, Spain,
  9. 9.
    Yajie, M., Richards, M., Ghanem, M., Guo, Y., Hassard, J.: Air Pollution Monitoring and Mining Based on Sensor Grid in London. Sensors 8(6), 3601–3623 (2008)CrossRefGoogle Scholar
  10. 10.
    Leung, K.: Mobile Environmental Sensing System (MESSAGE),
  11. 11.
    Liu, J.H., et al.: An air quality monitoring system for urban areas based on the technology of wireless sensor networks. International Journal on Smart Sensing and Intelligent Systems 5(1), 191–214 (2012)Google Scholar
  12. 12.
    Bielsa, A.: Smart City Project in Serbia to Monitor Environmental Parameters by Public Transportation with Waspmote,
  13. 13.
    Saukh, O., et al.: OpenSense. Welcome to OpenSense at ETH Zürich, Switzerland (2014)Google Scholar
  14. 14.
    Voženílek, V.: Terrain Sensitivity in Environmental Models. Geografie 107(2), 111–120 (2002)Google Scholar
  15. 15.
    Hejlová, V.: Spatial Distribution of Wireless Sensor Nodes in the Urban Environment. In: 3rd International Conference on Sensor Networks (SENSORNETS 2014), Lisbon, Portugal, pp. 3–10 (2014)Google Scholar
  16. 16.
    Talašová, J.: Fuzzy metody vícekriteriálního rozhodování. Olomouc, 179 (2003) ISBN 80-244-06144Google Scholar
  17. 17.
    Burian, J., Brus, J., Voženílek, V.: Development of Olomouc city in 1930-2009: based on analysis of functional areas. Journal of Maps 9(1), 64–67 (2013)CrossRefGoogle Scholar
  18. 18.
    Vávra, A., Vondráková, A., Pechanec, V., Voženílek, V.: Multi-user e-learning courses for climate and climate changes (e-klima). In: Information and Communication Technology in Education 2010, pp. 203–206. University of Ostrava (2010)Google Scholar
  19. 19.
    Pechanec, V., Vávra, A., Voženílek, V., Tolasz, R., Jílková, J., Němcová, Z., Šeflová, J., Holtanová, E., Vondráková, A., Jurek, M.: Education Project About Climate for Multi-User eLearning Courses. In: Proceedings of the 9th European Conference on e-Learning, vol. 12(2), pp. 454–462. Academic Publishing Ltd., Reading (2010)Google Scholar
  20. 20.
    Brus, J., Voženílek, V., Popelka, S.: An assessment of quantitative uncertainty visualization methods for interpolated meteorological data. In: Murgante, B., Misra, S., Carlini, M., Torre, C.M., Nguyen, H.-Q., Taniar, D., Apduhan, B.O., Gervasi, O. (eds.) ICCSA 2013, Part IV. LNCS, vol. 7974, pp. 166–178. Springer, Heidelberg (2013)CrossRefGoogle Scholar
  21. 21.
    Tuček, P., Pászto, V., Voženílek, V.: Regular use of entropy for studying dissimilar geographical phenomena. Geografie 114(2), 117–129 (2009)Google Scholar
  22. 22.
    Voženílek, V.: Artificial intelligence and GIS: mutual meeting and passing. In: International Conference on Intelligent Networking And Colaborative Systems (INCOS 2009), Barcelona, Spain, pp. 279–284 (2009)Google Scholar
  23. 23.
    Voženílek, V.: Terrain Sensitivity in Environmental Models. Geografie 107(2), 111–120 (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Department of GeoinformaticsPalacký University in OlomoucOlomoucCzech Republic

Personalised recommendations