Random Forests Based Classification for Crops Ripeness Stages

  • Esraa Elhariri
  • Nashwa El-Bendary
  • Aboul Ella Hassanien
  • Amr Badr
  • Ahmed M. M. Hussein
  • Václav Snášel
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 303)


This article presents a classification approach based on random forests algorithm for estimating and classifying the different maturity/ripeness stages of two types of crops; namely tomato and bell pepper (sweet pepper). The proposed approach consists of three phases that are pre-processing, feature extraction, and classification phases. Surface color of tomato and bell pepper is the most important characteristic to observe ripeness. So, the proposed classification system uses color features for classifying ripeness stages. It implements principal components analysis (PCA) along with support vector machine (SVM) algorithms and random forests (RF) classifier for features extraction and classification of ripeness stages, respectively. The datasets used for experiments were constructed based on real sample images for both tomatoes and bell pepper at different stages, which were collected from farms in Minya city, Upper Egypt. Datasets of total 250 and 175 images for tomato and bell pepper, respectively were used for both training and testing datasets. Training dataset is divided into five classes representing the different stages of tomato and bell pepper ripeness. Experimental results showed that SVM with Linear Kernel function achieved accuracy better than RF.


image classification features extraction ripeness principal component analysis (PCA) tomato bell pepper support vector machine (SVM) random forests (RF) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Elhariri, E., El-Bendary, N., Fouad, M.M.M., Platos, J., Hassanien, A.E., Hussein, A.M.M.: Multi-class SVM Based Classification Approach for Tomato Ripeness. In: Abraham, A., Krömer, P., Snášel, V. (eds.) Innovations in Bio-inspired Computing and Applications. AISC, vol. 237, pp. 175–186. Springer, Heidelberg (2014)CrossRefGoogle Scholar
  2. 2.
    Brezmes, J., Llobet, E., Vilanova, X., Saiz, G., Correig, X.: Fruit ripeness monitoring using an electronic nose. The Journal of Sensors and Actuators B-Chem. 69(3), 223–229 (2000)CrossRefGoogle Scholar
  3. 3.
    Elhariri, E., El-Bendary, N., Hussein, A.M.M., Hassanien, A.E., Badr, A.: Bell Pepper Ripeness Classification based on Support Vector Machine. In: The 2nd International Conference on Engineering and Technology (ICET 2014), Cairo, Egypt (accepted 2014)Google Scholar
  4. 4.
    May, Z., Amaran, M.H.: Automated ripeness assessment of oil palm fruit using RGB and fuzzy logic technique. In: Demiralp, M., Bojkovic, Z., Repanovici, A. (eds.) Proc. the 13th WSEAS International Conference on Mathematical and Computational Methods in Science and Engineering (MACMESE 2011), Wisconsin, USA, pp. 52–59 (2011)Google Scholar
  5. 5.
    Camelo, A.F.L.: Manual for the preparation and sale of fruits and vegetables From field to market. Food ans Agriculture Organization (FAO) of the United Nations (UN), Agricultural Services Bulletin, Version 151, Rome (2004)Google Scholar
  6. 6.
    Rodrguez-Pulido, F.J., Gordillo, B., Gonzlez-Miret, M.L., Heredia, F.J.: Analysis of food appearance properties by computer vision applying ellipsoids to colour data. Computers and Electronics in Agriculture 99, 108–115 (2013)CrossRefGoogle Scholar
  7. 7.
    Dadwal, M., Banga, V.K.: Estimate Ripeness Level of fruits Using RGB Color Space and Fuzzy Logic Technique. International Journal of Engineering and Advanced Technology (IJEAT) 02(01), 225–229 (2012)Google Scholar
  8. 8.
    Balestani, A.M., Moghaddam, P.A., Motlaq, A.M., Dolaty, H.: Sorting and Grading of Cherries on the Basis of Ripeness, Size and Defects by Using Image Processing Techniques. International Journal of Agriculture and Crop Sciences(IJACS) 4(16), 1144–1149 (2012)Google Scholar
  9. 9.
    Damiri, H.J., Slamet, C.: Application of Image Processing and Artificial Neural Networks to Identify Ripeness and Maturity of the Lime(citrus medica). International Journal of Basic and Applied Science 01(02), 171–179 (2012)Google Scholar
  10. 10.
    Shahbahrami, A., Borodin, D., Juurlink, B.: Comparison between color and texture features for image retrieval. In: Proc. 19th Annual Workshop on Circuits, Systems and Signal Processing (ProRisc 2008), Veldhoven, The Netherlands (2008)Google Scholar
  11. 11.
    Soman, S., Ghorpade, M., Sonone, V., Chavan, S.: Content Based Image Retrieval using Advanced Color and Texture Features, in. In: Proc. International Conference in Computational Intelligence (ICCIA 2012), New York, USA (2012)Google Scholar
  12. 12.
    Wu, Q., Zhou, D.-X.: Analysis of support vector machine classification. J. Comput. Anal. Appl. 8, 99–119 (2006)MATHMathSciNetGoogle Scholar
  13. 13.
    Zawbaa, H.M., El-Bendary, N., Hassanien, A.E., Abraham, A.: SVM-based Soccer Video Summarization System. In: Proc. The Third IEEE World Congress on Nature and Biologically Inspired Computing (NaBIC 2011), Salamanca, Spain, pp. 7–11 (2011)Google Scholar
  14. 14.
    Zawbaa, H.M., El-Bendary, N., Hassanien, A.E., Kim, T.-h.: Machine Learning-Based Soccer Video Summarization System. In: Kim, T.-h., Gelogo, Y. (eds.) MulGraB 2011, Part II. CCIS, vol. 263, pp. 19–28. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  15. 15.
    Suralkar, S.R., Karode, A.H., Pawade, P.W.: Texture Image Classification Using Support Vector Machine. International Journal of Computer Applications in Technology 3(1), 71–75 (2012)Google Scholar
  16. 16.
    Suganthy, M., Ramamoorthy, P.: Principal Component Analysis Based Feature Extraction, Morphological Edge Detection and Localization for Fast Iris Recognition. Journal of Computer Science 8(9), 1428–1433 (2012)CrossRefGoogle Scholar
  17. 17.
    Ada, Kaur, R.: Feature Extraction and Principal Component Analysis for Lung Cancer Detection in CT scan Images. International Journal of Advanced Research in Computer Science and Software Engineering 3(3) (2013)Google Scholar
  18. 18.
    El-Bendary, N., Zawbaa, H.M., Hassanien, A.E., Snasel, V.: PCA-based Home Videos Annotation System. The International Journal of Reasoning-based Intelligent Systems (IJRIS) 3(2), 71–79 (2011)Google Scholar
  19. 19.
    Xiao, B.: Principal component analysis for feature extraction of image sequence. In: Proc. International Conference on Computer and Communication Technologies in Agriculture Engineering (CCTAE), Chengdu, China, vol. 1, pp. 250–253 (2010)Google Scholar
  20. 20.
    Kulkarni, V.Y., Sinha, P.K.: Efficient Learning of Random Forest Classifier using Disjoint Partitioning Approach. In: Proceedings of the World Congress on Engineering, vol. 2 (2013)Google Scholar
  21. 21.
    Bosch, A., Zisserman, A., Munoz, X.: Image Classification using Random Forests and Ferns. In: IEEE 11th International Conference on Computer Vision (2007)Google Scholar
  22. 22.
    Liu, Y., Zheng, Y.F.: One-against-all multi-class SVM classification using reliability measures. In: Proc. IEEE International Joint Conference on Neural Networks (IJCNN 2005), Montreal, Quebec, Canada, vol. 2, pp. 849–854 (2005)Google Scholar
  23. 23.
    Anthony, G., Gregg, H., Tshilidzi, M.: Image Classification Using SVMs: One-against-One Vs One-against-All. In: Proc. of the 28th Asian Conference on Remote Sensing (2007)Google Scholar
  24. 24.
    Fox, A.J., Del Pozo-Insfran, D., Lee, J.H., Sargent, S.A., Talcott, S.T.: Ripening-induced Chemical and Antioxidant Changes in Bell Peppers as Affected by Harvest Maturity and Postharvest Ethylene Exposure. American Society for Horticultural Science, Hortscience 40(3), 732–736 (2005)Google Scholar
  25. 25.
    Antoniali, S., Leal, P.A.M., Magalhes, A.M.: Physico-chemical characterization of ‘Zarco HS’ yellow bell pepper for different ripeness stages. Sci. Agric. 64(1), 19–22 (2007)CrossRefGoogle Scholar
  26. 26.
    Vanschoenwinkel, B., Manderick, B.: Appropriate kernel functions for support vector machine learning with sequences of symbolic data. In: Winkler, J.R., Niranjan, M., Lawrence, N.D. (eds.) Machine Learning Workshop. LNCS (LNAI), vol. 3635, pp. 256–280. Springer, Heidelberg (2005)Google Scholar
  27. 27.
    Boolchandani, D., Sahula, V.: Exploring Efficient Kernel Functions for Support Vector Machine Based Feasibility Models for Analog Circuits. Int. Journal of Design, Analysis, and Tools for Circuits and Systems 1(1), 1–8 (2011)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Esraa Elhariri
    • 1
    • 6
  • Nashwa El-Bendary
    • 2
    • 6
  • Aboul Ella Hassanien
    • 3
    • 6
  • Amr Badr
    • 3
  • Ahmed M. M. Hussein
    • 4
  • Václav Snášel
    • 5
  1. 1.Faculty of Computers and InformationFayoum UniversityFayoumEgypt
  2. 2.Arab Academy for Science,Technology, and Maritime TransportCairoEgypt
  3. 3.Faculty of Computers and InformationCairo UniversityCairoEgypt
  4. 4.Faculty of AgricultureMinia UniversityMinyaEgypt
  5. 5.Electrical Engineering & Computer ScienceVSB-TU of OstravaOstravaCzech Republic
  6. 6.Scientific Research Group in Egypt (SRGE)CairoEgypt

Personalised recommendations