Advertisement

Optimization of Wireless Sensor Node Parameters by Differential Evolution and Particle Swarm Optimization

  • Pavel Krömer
  • Michal Prauzek
  • Petr Musilek
  • Tomas Barton
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 303)

Abstract

Wireless sensor nodes with the capability to harvest energy from their environment are well suited for outdoor environmental monitoring applications. Due to their very nature, they can map spatial and temporal characteristics of the environment with high resolution. This, in turn, contributes to a better understanding of the processes and phenomena in the environment under surveillance. However, their energy-efficient operation is not a straightforward task. In this work, we use two bio-inspired optimization methods for a simulation-driven optimization of wireless sensor node parameters with respect to their performance at the intended deployment location.

Keywords

wireless sensor networks parameter optimization differential evolution particle swarm optimization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alberta Agriculture and Rural Developement: AgroClimactic information service (December 2013), http://agriculture.alberta.ca/acis/
  2. 2.
    Bitam, S., Mellouk, A., Zeadally, S.: Hybr: A hybrid bio-inspired bee swarm routing protocol for safety applications in vehicular ad hoc NETworks (vanets). Journal of Systems Architecture 59(Pt. B 10), 953–967 (2013), Advanced Smart Vehicular Communication System and ApplicationsGoogle Scholar
  3. 3.
    Clerc, M.: Particle Swarm Optimization. ISTE, Wiley (2010)Google Scholar
  4. 4.
    Corke, P., Wark, T., Jurdak, R., Hu, W., Valencia, P., Moore, D.: Environmental wireless sensor networks. Proc. of the IEEE 98(11), 1903–1917 (2010)CrossRefGoogle Scholar
  5. 5.
    EMEND Project: Ecosystem-based research into boreal forest management (December 2013), http://www.emendproject.org/pages/read/about
  6. 6.
    Engelbrecht, A.: Computational Intelligence: An Introduction, 2nd edn. Wiley, New York (2007)CrossRefGoogle Scholar
  7. 7.
    Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of the IEEE International Conf. on Neural Networks 1995, vol. 4, pp. 1942–1948 (1995)Google Scholar
  8. 8.
    Prauzek, M., Musilek, P., Watts, A.G., Michalikova, M.: Powering environmental monitoring systems in arctic regions: A simulation study. Elektronika ir Elektrotechnika (to appear, 2014)Google Scholar
  9. 9.
    Prauzek, M., Watts, A.G., Musilek, P., Wyard-Scott, L., Koziorek, J.: Simulation of adaptive duty cycling in solar powered environmental monitoring systems. In: IEEE Canadian Conference on Electrical and Computer Engineering 2014 - Power Electronics and Energy Systems (2014)Google Scholar
  10. 10.
    Price, K.V., Storn, R.M., Lampinen, J.A.: Differential Evolution A Practical Approach to Global Optimization. Natural Computing Series. Springer, Berlin (2005)MATHGoogle Scholar
  11. 11.
    Raghunathan, V., Kansal, A., Hsu, J., Friedman, J., Srivastava, M.: Design considerations for solar energy harvesting wireless embedded systems. In: Fourth International Symposium on Information Processing in Sensor Networks, IPSN 2005, pp. 457–462 (2005)Google Scholar
  12. 12.
    Shannon, C.E.: Communication in the presence of noise. Proceedings of the IEEE 86(2), 447–457 (1998)CrossRefGoogle Scholar
  13. 13.
    Watts, A.G., Prauzek, M., Musilek, P., Pelikan, E., Sanchez-Azofeita, A.: Fuzzy power management for environmental monitoring systems in tropical regions. In: 2014 International Joint Conference on Neural Networks (2014)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Pavel Krömer
    • 1
    • 2
  • Michal Prauzek
    • 1
    • 2
  • Petr Musilek
    • 1
    • 2
  • Tomas Barton
    • 3
  1. 1.Department of Electrical and Computer EngineeringUniversity of AlbertaEdmontonCanada
  2. 2.Faculty of Electrical Engineering and Computer ScienceVŠB Technical University of OstravaOstravaCzech Republic
  3. 3.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations