Skip to main content

PHLOGON: PHase-based LOGic using Oscillatory Nano-systems

  • Conference paper
Unconventional Computation and Natural Computation (UCNC 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8553))

Abstract

In this paper we take a fresh look at Goto and von Neumann’s phase-based logic ideas, provide enhancements that can overcome major limitations of their previous implementations. We show that with injection locking serving as the central mechanism, almost any DC-powered, self-sustaining nonlinear oscillator — including electronic, spintronic, biological, optical and mechanical ones — can be used to build fundamental components — including latches and combinatorial elements in a phase logic based computing architecture. We also discuss noise immunity and potential power dissipation advantages that can be achieved under this scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Neogy, A., Roychowdhury, J.: Analysis and Design of Sub-harmonically Injection Locked Oscillators. In: Proc. IEEE DATE (March 2012)

    Google Scholar 

  2. Adler, R.: A study of locking phenomena in oscillators. Proceedings of the I.R.E. and Waves and Electrons 34, 351–357 (1946)

    Google Scholar 

  3. Bhansali, P., Roychowdhury, J.: Gen-Adler: The generalized Adler’s equation for injection locking analysis in oscillators. In: Proc. IEEE ASP-DAC, pp. 522–227 (January 2009)

    Google Scholar 

  4. Buck, J., Buck, E.: Synchronous fireflies. Scientific American (1976)

    Google Scholar 

  5. Cilek, F., Seemann, K., Brenk, D., Essel, J., Heidrich, J., Weigel, R., Holweg, G.: Ultra low power oscillator for UHF RFID transponder. In: Proc. IEEE Freq. Contr. Symp., pp. 418–421 (May 2008)

    Google Scholar 

  6. Deen, M.J., Kazemeini, M.H., Naseh, S.: Performance characteristics of an ultra-low power VCO. In: Proc. IEEE ISCAS (May 2003)

    Google Scholar 

  7. Demir, A., Mehrotra, A., Roychowdhury, J.: Phase Noise in Oscillators: a Unifying Theory and Numerical Methods for Characterization. IEEE Trans. Ckts. Syst. – I: Fund. Th. Appl. 47, 655–674 (2000)

    Article  Google Scholar 

  8. Demir, A., Roychowdhury, J.: A Reliable and Efficient Procedure for Oscillator PPV Computation, with Phase Noise Macromodelling Applications. IEEE Trans. on Computer-Aided Design, 188–197 (2003)

    Google Scholar 

  9. Eiichi, G.: Resonator circuits, US Patent 2,948,818 (August 9, 1960)

    Google Scholar 

  10. Farzeen, S., Ren, G., Chen, C.: An ultra-low power ring oscillator for passive UHF RFID transponders. In: Proc. IEEE MWSCAS, pp. 558–561 (August 2010)

    Google Scholar 

  11. Feuer, M.D., Hendel, R.H., Kiehl, R.A., Hwang, J.C.M., Keramidas, V.G., Allyn, C.L., Dingle, R.: High-speed low-voltage ring oscillators based on selectively doped heterojunction transistors. IEEE Electron Device Letters EDL-4, 306–307 (1983)

    Article  Google Scholar 

  12. Giancoli, D.C.: Physics for Scientists and Engineers. Prentice-Hall, Englewood Cliff (1989)

    Google Scholar 

  13. Goto, E.: New Parametron circuit element using nonlinear reactance, KDD Kenyku Shiryo (1954)

    Google Scholar 

  14. Grigoriu, M.: Stochastic Calculus: Applications in Science and Engineering. Birkhäuser, Boston (2002)

    Book  Google Scholar 

  15. Hoe, W., Goto, E.: Quantum Flux Parametron: A Single Quantum Flux Superconducting Logic Device. Studies in Josephson Supercomputers, vol. 2. World Scientific (1991)

    Google Scholar 

  16. Huygens, C.: Horologium Oscillatorium. Apud F. Muget, Paris (1672); Observations of injection locking between grandfather clocks

    Google Scholar 

  17. Izhikevich, E.M.: Dynamical Systems in Neuroscience: The Geometry of Excitability and Bursting (Computational Neuroscience), 1st edn. The MIT Press (November 2006)

    Google Scholar 

  18. Kaka, S., Pufall, M.R., Rippard, W.H., Silva, T.J., Russek, S.E., Katine, J.A.: Mutual phase-locking of microwave spin torque nano-oscillators. Nature 437, 389–392 (2005)

    Article  Google Scholar 

  19. Kurokawa, K.: Injection locking of microwave solid-state oscillators. Proceedings of the IEEE 61, 1336–1410, 1386–1410 (1973)

    Google Scholar 

  20. Lai, X., Roychowdhury, J.: Capturing injection locking via nonlinear phase domain macromodels. IEEE Trans. Microwave Theory Tech. 52, 2251–2261 (2004)

    Article  Google Scholar 

  21. Mahboob, I., Yamaguchi, H.: Bit storage and bit flip operations in an electromechanical oscillator. Nature Nanotechnology 3, 275–279 (2008)

    Article  Google Scholar 

  22. Malkin, I.G.: Some Problems in Nonlinear Oscillation Theory, Gostexizdat, Moscow (1956)

    Google Scholar 

  23. Manley, J.M., Rowe, R.E.: Some general properties of nonlinear elements – Part I. General energy relations. Proceedings of the Institute of Radio Engineers 44, 904–913 (1956)

    Google Scholar 

  24. Middleton, D.: An Introduction to Statistical Communication Theory. Wiley-IEEE, New York (1996)

    MATH  Google Scholar 

  25. Muroga, S.: Elementary principle of Parametron and its application to digital computers. Datamation 4, 31–34 (1958)

    Google Scholar 

  26. Nguyen, C.T.-C.: Vibrating RF MEMS for Next Generation Wireless Applications. In: Proc. IEEE CICC (May 2004)

    Google Scholar 

  27. Oshima, Enemoto, Watanabe: Oscillation theory of Parametron and method of measuring nonlinear elements, KDD Kenkyu Shiryo (1955)

    Google Scholar 

  28. Oshima, S.: Introduction to Parametron. Denshi Kogyo 4, 4 (1955)

    Google Scholar 

  29. Bhansali, P., Srivastava, S., Lai, X., Roychowdhury, J.: Comprehensive Procedure for Fast and Accurate Coupled Oscillator Network Simulation. In: Proc. ICCAD, pp. 815–820 (November 2008)

    Google Scholar 

  30. Kinget, P., Melville, R., Long, D., Gopinathan, V.: An injection-locking scheme for precision quadrature generation. IEEE J. Solid-State Ckts. 37, 845–851 (2002)

    Article  Google Scholar 

  31. Pufall, M.R., Rippard, W.H., Kaka, S., Silva, T.J., Russek, S.E.: Frequency modulation of spin-transfer oscillators. Applied Physics Letters 86, 82506 (2005)

    Article  Google Scholar 

  32. Rippard, W.H., Pufall, M.R., Kaka, S., Silva, T.J., Russek, S.E., Katine, J.A.: Injection locking and phase control of spin transfer nano-oscillators. Phys. Rev. Lett. 95, 067203 (2005)

    Google Scholar 

  33. Strogatz, S.: Sync: The Emerging Science of Spontaneous Order, Theia (March 2003)

    Google Scholar 

  34. Strogatz, S.H., Stewart, I.: Coupled oscillators and biological synchronization. Scientific American 269, 102–109 (1993)

    Article  Google Scholar 

  35. Takahashi, H.: The Parametron. Tsugakkat Shi 39, 56 (1956)

    Google Scholar 

  36. Taub, A.H. (ed.): John von Neumann: Collected Works. Design of Computers, Theory of Automata and Numerical Analysis, vol. V. Pergamon Press, New York (1963)

    Google Scholar 

  37. Toh, S., Tsukamoto, Y., Guo, Z., Jones, L., Liu, T., Nikolic, B.: Impact of random telegraph signals on Vmin in 45nm SRAM. In: Proceedings of the IEEE International Electron Devices Meeting, pp. 767–770 (2009)

    Google Scholar 

  38. Tsukamoto, Y., Toh, S., Shin, C., Mairena, A., Liu, T., Nikolic, B.: Analysis of the relationship between random telegraph signal and negative bias temperature instability. In: Proceedings of the IEEE International Reliability Physics Symposium, pp. 1117–1121 (2010)

    Google Scholar 

  39. von Neumann, J.: Non-linear capacitance or inductance switching, amplifying and memory devices (1954)

    Google Scholar 

  40. Weinstein, D., Bhave, S.A.: The resonant body transistor. Nano Letters 10, 1234–1237 (2010)

    Article  Google Scholar 

  41. Wigington, R.L.: A New Concept in Computing. Proceedings of the Institute of Radio Engineers 47, 516–523 (1959)

    Google Scholar 

  42. Winfree, A.: Biological Rhythms and the Behavior of Populations of Coupled Oscillators. Theoretical Biology 16, 15–42 (1967)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianshi Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Wang, T., Roychowdhury, J. (2014). PHLOGON: PHase-based LOGic using Oscillatory Nano-systems. In: Ibarra, O., Kari, L., Kopecki, S. (eds) Unconventional Computation and Natural Computation. UCNC 2014. Lecture Notes in Computer Science(), vol 8553. Springer, Cham. https://doi.org/10.1007/978-3-319-08123-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08123-6_29

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08122-9

  • Online ISBN: 978-3-319-08123-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics