Advertisement

Five Nodes Are Sufficient for Hybrid Networks of Evolutionary Processors to Be Computationally Complete

  • Artiom Alhazov
  • Rudolf Freund
  • Yurii Rogozhin
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8553)

Abstract

A hybrid network of evolutionary processors (HNEP) is a graph where each node is associated with a special rewriting system called an evolutionary processor, an input filter, and an output filter. Each evolutionary processor is given a finite set of one type of point mutations (insertion, deletion or a substitution of a symbol) which can be applied to certain positions in a string. An HNEP rewrites the strings in the nodes and then re-distributes them according to a filter-based communication protocol; the filters are defined by certain variants of random-context conditions. HNEPs can be considered both as languages generating devices (GHNEPs) and language accepting devices (AHNEPs); most previous approaches treated the accepting and generating cases separately. For both cases, in this paper we improve previous results by showing that five nodes are sufficient to accept (AHNEPs) or generate (GHNEPs) any recursively enumerable language by showing the more general result that any partial recursive relation can be computed by an HNEP with (at most) five nodes.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alhazov, A., Csuhaj-Varjú, E., Martín-Vide, C., Rogozhin, Y.: About Universal Hybrid Networks of Evolutionary Processors of Small Size. In: LATA 2008. LNCS, vol. 5196, pp. 28–39. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  2. 2.
    Alhazov, A., Csuhaj-Varjú, E., Martín-Vide, C., Rogozhin, Y.: Computational Completeness of Hybrid Networks of Evolutionary Processors with Seven Nodes. In: Campeanu, C., Pighizzini, G. (eds.) Descriptional Complexity of Formal Systems, Proceedings DCFS 2008, Univ. Prince Edward Island, Charlottetown, pp. 38–47 (2008)Google Scholar
  3. 3.
    Alhazov, A., Csuhaj-Varjú, E., Martín-Vide, C., Rogozhin, Y.: On the Size of Computationally Complete Hybrid Networks of Evolutionary Processors. Theoretical Computer Science 410, 3188–3197 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Alhazov, A., Dassow, J., Martín-Vide, C., Rogozhin, Y., Truthe, B.: On Networks of Evolutionary Processors with Nodes of Two Types. Fundamenta Informaticae 91(1), 1–15 (2009)zbMATHMathSciNetGoogle Scholar
  5. 5.
    Alhazov, A., Krassovitskiy, A., Rogozhin, Y.: Circular Post Mahines and P Systems with Exo-insertion and Deletion. In: Gheorghe, M., Păun, G., Rozenberg, G., Salomaa, A., Verlan, S. (eds.) CMC 2011. LNCS, vol. 7184, pp. 73–86. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Alhazov, A., Kudlek, M., Rogozhin, Y.: Nine Universal Circular Post Machines. Computer Science Journal of Moldova 10(3), 247–262 (2002)zbMATHMathSciNetGoogle Scholar
  7. 7.
    Alhazov, A., Martín-Vide, C., Rogozhin, Y.: On the Number of Nodes in Universal Networks of Evolutionary Processors. Acta Inf. 43(5), 331–339 (2006)CrossRefzbMATHGoogle Scholar
  8. 8.
    Alhazov, A., Martín-Vide, C., Rogozhin, Y.: Networks of Evolutionary Processors with Two Nodes are Unpredictable. In: Pre-Proceedings of the 1st International Conference on Language and Automata Theory and Applications, LATA, GRLMC report 35/07, Rovira i Virgili University, Tarragona, 521–528 (2007)Google Scholar
  9. 9.
    Castellanos, J., Leupold, P., Mitrana, V.: On the Size Complexity of Hybrid Networks of Evolutionary Processors. Theoretical Computer Science 330(2), 205–220 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Castellanos, J., Martín-Vide, C., Mitrana, V., Sempere, J.M.: Solving NP-complete Problems with Networks of Evolutionary Processors. In: Mira, J., Prieto, A.G. (eds.) IWANN 2001. LNCS, vol. 2084, pp. 621–628. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  11. 11.
    Csuhaj-Varjú, E., Martín-Vide, C., Mitrana, V.: Hybrid Networks of Evolutionary Processors are Computationally Complete. Acta Inf. 41(4-5), 257–272 (2005)CrossRefzbMATHGoogle Scholar
  12. 12.
    Freund, R., Rogozhin, Y., Verlan, S.: Generating and Accepting P Systems with Minimal Left and Right Insertion and Deletion. Natural Computing. Springer (2014), doi:10.1007/s11047-013-9396-3Google Scholar
  13. 13.
    Kudlek, M., Rogozhin, Y.: Small Universal Circular Post Machines. Computer Science Journal of Moldova 9(1), 34–52 (2001)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Kudlek, M., Rogozhin, Y.: New Small Universal Circular Post Machines. In: Freivalds, R. (ed.) FCT 2001. LNCS, vol. 2138, pp. 217–227. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  15. 15.
    Loos, R., Manea, F., Mitrana, V.: Small Universal Accepting Hybrid Networks of Evolutionary Processors. Acta Informatica 47(2), 133–146 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Manea, F., Martín-Vide, C., Mitrana, V.: On the Size Complexity of Universal Accepting Hybrid Networks of Evolutionary Processors. Mathematical Structures in Computer Science 17(4), 753–771 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Manea, F., Martín-Vide, C., Mitrana, V.: All NP-problems can be Solved in Polynomial Time by Accepting Hybrid Networks of Evolutionary Processors of Constant Size. Information Processing Letters 103, 112–118 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Margenstern, M., Mitrana, V., Jesús Pérez-Jímenez, M.: Accepting Hybrid Networks of Evolutionary Processors. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA 2004. LNCS, vol. 3384, pp. 235–246. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  19. 19.
    Martín-Vide, C., Mitrana, V., Pérez-Jiménez, M.J., Sancho-Caparrini, F.: Hybrid Networks of Evolutionary Processors. In: Cantú-Paz, E., et al. (eds.) GECCO 2003. LNCS, vol. 2723, pp. 401–412. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  20. 20.
    Post, E.L.: Formal Reductions of the General Combinatorial Decision Problem. American Journal of Mathematics 65(2), 197–215 (1943)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 3. Springer (1997)Google Scholar
  22. 22.
    Salomaa, A.: Formal Languages. Academic Press, New York (1973)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  1. 1.Institute of Mathematics and Computer ScienceAcademy of Sciences of MoldovaChişinăuMoldova
  2. 2.Faculty of InformaticsVienna University of TechnologyViennaAustria

Personalised recommendations