Skip to main content

Trend, Time Series, and Wavelet Analysis of River Water Dynamics

  • Conference paper
  • First Online:
  • 1775 Accesses

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 92))

Abstract

Time series, trend, wavelet and statistical analysis of water quality parameters Chemical Oxygen Demand (COD), Biochemical Oxygen Demand (BOD), Dissolved Oxygen (DO) monitored for river Yamuna in India have been studied. It is observed that COD is highly correlated with BOD. For all auto regressive integrated moving average model (p,d,q) value of “d,” i.e. middle value is zero thus process is stationary. It is also observed that RMSE values are comparatively very low, thus dependent series is closed with the model predicted level. MAPE, MaxAPE, MAE, MaxAE, Normalized BIC are calculated and have low value for all parameters. Trend is calculated by using auto correlation function, partial auto correlation function, and lag. Thus the predictive model is useful at 95 % confidence limits. 1-D discrete and continuous Daubechies Wavelet analysis explains that the parameters COD, BOD, DO have the maximum value 120, 50, 8 and amplitude (a5) varies between 52 to 78, 10 to 30, 0.2 to 1.4, respectively. The scale values of Db5, i.e. d5, d4, d3, d2, and d1 range between − 20 and + 20 for all parameters. All parameters cross the prescribed limits of WHO/EPA, thus water is not fit for drinking, agriculture, and industrial use.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Banu, J.R., Kaliappan, S., Yeom, I.T.: Treatment of domestic wastewater using upflow anaerobic sludge blanket reactor. Int. J. Environ. Sci. Technol. 4, 363–370 (2007)

    Article  Google Scholar 

  2. Bhardwaj, R., Parmar, K.S.: Water quality index and fractal dimension analysis of water parameters. Int. J. Environ. Sci. Technol. (2012). doi:10.1007/s13762-012-0086-y

    Google Scholar 

  3. Bhatnagar, A., Vilar, V.J.P., Botelho, C.M.S., Boaventura, R.A.R.: A review of the use of red mud as adsorbent for the removal of toxic pollutants from water and wastewater. Environ. Technol. 32, 231–249 (2011)

    Article  Google Scholar 

  4. Box, G.E.P., Jenkins, G.M., Reinsel, G.C.: Time Series Analysis: Forecasting and Control, 4th edn. Wiley, London (2008)

    Book  Google Scholar 

  5. Can, Z., Aslan, Z., Oguz, O., Siddiqi, A.H.: Wavelet transform of meteorological parameter and gravity waves. Ann. Geophys. 23, 659–663 (2005)

    Article  Google Scholar 

  6. Chenini, I., Khemiri, S.: Evaluation of ground water quality using multiple linear regression and structural equation modeling. Int. J. Environ. Sci. Technol. 6, 509–519 (2009)

    Article  Google Scholar 

  7. CPCB, Water Quality Status of Yamuna River (1999–2005): Central Pollution Control Board, Ministry of Environment & Forests, Assessment and Development of River Basin Series: ADSORBS/41/2006–07 (2006)

    Google Scholar 

  8. Daubechies, I.: Ten Lectures on Wavelets. SIAM, Philadelphia (1992)

    Book  MATH  Google Scholar 

  9. DeLurgio, S.A.: Forecasting Principles and Applications, 1st edn. Irwin McGraw-Hill, New York (1998)

    Google Scholar 

  10. Grapes, A.: An introduction to wavelets. IEEE Comput. Sci. Eng. Signal Image Process. 2, 50–61 (1995)

    Article  Google Scholar 

  11. Hur, J., Lee, T.H., Lee, B.M.: Estimating the removal efficiency of refractory dissolved organic matter in wastewater treatment plants using a fluorescence technique. Environ. Technol. 32, 1843–1850 (2011)

    Article  Google Scholar 

  12. Imo, T.S., Oomori, T., Toshihiko, M., Tamaki, F.: The comparative study of trihalomethanes in drinking waters. Int. J. Environ. Sci. Technol. 4, 421–426 (2007)

    Article  Google Scholar 

  13. Jain, P., Sharma, J.D., Sohu, D., Sharma, P.: Chemical analysis of drinking water of villages of Sanganer Tehsil, Jaipur District. Int. J. Environ. Sci. Technol. 2, 373–379 (2005)

    Google Scholar 

  14. Ji, M.K., Ahn, Y.T., Khan, M.A., Shanab, R.A.I.A., Cho, Y., Choi, J.Y., Kim, Y.J., Song, H., Jeon, B.H.: Removal of nitrate and ammonium ions from livestock wastewater by hybrid systems composed of zero-valent iron and adsorbents. Environ. Technol. 32, 1851–1857 (2011)

    Article  Google Scholar 

  15. Juang, D.F., Tsai, W.P., Liu, W.K., Lin, J.H.: Treatment of polluted river water by a gravel contact oxidation system constructed under riverbed. Int. J. Environ. Sci. Technol. 5, 305–314 (2008)

    Article  Google Scholar 

  16. Kahya, E., Kalayci, S.: Trend analysis of streamflow in Turkey. J. Hydrol. 289, 128–144 (2004)

    Article  Google Scholar 

  17. Koh, Y.K.K., Chiu, T.Y., Boobis, A., Cartmell, E., Scrimshaw, M.D., Lester, J.N.: Treatment and removal strategies for estrogens from wastewater. Environ. Technol. 29, 245–267 (2008)

    Article  Google Scholar 

  18. Korashey, R.: Using regression analysis to estimate water quality constituents in Bahr El Baqar Drain. J. Appl. Sci. Res. 5, 1067–1076 (2009)

    Google Scholar 

  19. Mallat, S.: A Wavelet Tour of Signal Processing, 2nd edn. Academic, San Diego (2001)

    Google Scholar 

  20. Martin, I., Pidou, M., Soares, A., Judd, S., Jefferson, B.: Modelling the energy demands of aerobic and anaerobic membrane bioreactors for wastewater treatment. Environ. Technol. 32, 921–932 (2011)

    Article  Google Scholar 

  21. McCleary, R., Hay, R.A.: Applied Time Series Analysis for the Social Sciences. Sage, Beverly Hills (1980)

    Google Scholar 

  22. Mousavi, M., Kiani, S., Lotfi, S., Naeemi, N., Honarmand, M.: Transient and spatial modeling and simulation of polybrominated diphenyl ethers reaction and transport in air, water and soil. Int. J. Environ. Sci. Technol. 5, 323–330 (2008)

    Article  Google Scholar 

  23. Parmar, K.S., Chugh, P., Minhas, P., Sahota, H.S.: Alarming pollution levels in rivers of Punjab. Indian J. Environ. Prot. 29, 953–959 (2009)

    Google Scholar 

  24. Prasad, B.G., Narayana, T.S.: Subsurface water quality of different sampling stations with some selected parameters at Machilipatnam Town. Nat. Environ. Pollut. Technol. 3, 47–50 (2004)

    Google Scholar 

  25. Psargaonkar, A., Gupta, A., Devotta, S.: Multivariate analysis of ground water resources in Ganga- Yamuna Basin (India). J. Environ. Sci. Eng. 50, 215–222 (2008)

    Google Scholar 

  26. Rangarajan, G.: A climate predictability index and its applications. Geophys. Res. Lett. 24, 1239–1242 (1997)

    Article  Google Scholar 

  27. Rangarajan, G., Ding, M.: Integrated approach to the assessment of long range correlation in time series data. Phys. Rev. E 61, 4991–5001 (2000)

    Article  MathSciNet  Google Scholar 

  28. Rangarajan, G., Sant, D.A.: Fractal dimensional analysis of Indian climatic dynamics. Chaos Solitons Fractals 19, 285–291 (2004)

    Article  MATH  Google Scholar 

  29. Vassilis, Z., Antonopoulos, M., Mitsiou, A.K.: Statistical and trend analysis of water quality and quantity data for the Strymon River in Greece. Hydrol. Earth Syst. Sci. 5, 679–691 (2001)

    Article  Google Scholar 

  30. WHO: International Standards for Drinking Water. World Health Organization, Geneva (1971)

    Google Scholar 

  31. Yeon, I.S., Jun, K.W., Lee, H.J.: The improvement of total organic carbon forecasting using neural networks discharge model. Environ. Technol. 30, 45–51 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to University Grant Commission (UGC), Government of India for financial support (F. 41-803/2012 (SR)); Central Pollution Control Board (CPCB), Government of India for providing the research data; Guru Gobind Singh Indraprastha University, Delhi (India) for providing research facilities. First author is thankful to Sant Baba Bhag Singh Institute of Engineering and Technology for providing study leave to pursue research degree.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi Bhardwaj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Parmar, K.S., Bhardwaj, R. (2014). Trend, Time Series, and Wavelet Analysis of River Water Dynamics. In: Bandt, C., Barnsley, M., Devaney, R., Falconer, K., Kannan, V., Kumar P.B., V. (eds) Fractals, Wavelets, and their Applications. Springer Proceedings in Mathematics & Statistics, vol 92. Springer, Cham. https://doi.org/10.1007/978-3-319-08105-2_33

Download citation

Publish with us

Policies and ethics