Skip to main content

Inverse Representation Theorem for Matrix Polynomials and Multiscaling Functions

  • Conference paper
  • First Online:
Fractals, Wavelets, and their Applications

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 92))

Abstract

Wavelet analysis provides suitable bases for the class of L 2 functions. The function to be represented is approximated at different resolutions. The desirable properties of a basis are orthogonality, compact supportedness and symmetricity. In the scalar case, the only wavelet with these properties is Haar wavelet. Theory of multiwavelets assumes significance since it offers symmetric, compactly supported, orthogonal bases for L 2(R). The properties of a multiwavelet are determined by the corresponding Multiscaling Function. A multiscaling function is characterized by its symbol function which is a matrix polynomial in complex exponential. The inverse representation theorem of matrix polynomials provides a method to construct a matrix polynomial from its Jordan pair. Our objective is to find the properties that characterize a Jordan pair of a symbol function of a multiscaling function with desirable properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bownik, M.: On characterizations of multiwavelets in \(L^{2}(R^{n})\). Proc. Am. Math. Soc. 129(11), 3265–3274 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chui, C.K., Jiang, Q.: Balanced Multiwavelets in R. Math. Comput. 74(251) 1323–1344 (2004)

    Article  MathSciNet  Google Scholar 

  3. Daubechies, I.: Ten Lectures on Wavelets, vol. 61. Society for Industrial and Applied Mathematics, Philadelphia (1992)

    Book  MATH  Google Scholar 

  4. Geronimo, J.S., Hardin, D.P., Massopust, P.R.: Fractal functions and wavelet expansions based on several scaling functions. J. Approx. Theory 78(3), 373–401 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Gohberg, I., Rodman, L., Lancaster, P.: Matrix Polynomials. Academic, London, (1982)

    MATH  Google Scholar 

  6. Gripenberg, G.: Computing the joint spectral radius. Linear Algebra Appl. 234, 43–60 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Heil, C., Colella, D.: Matrix refinement equations: existence and uniqueness. J. Fourier Anal. Appl. 2, 363–378 (1996)

    MathSciNet  MATH  Google Scholar 

  8. Heil, C., Strang, G.: Continuity of the joint spectral radius: application to wavelets. In: Linear Algebra for Signal Processing, pp. 51–61. Springer, New York (1995)

    Google Scholar 

  9. Heil, C., Strang, G., Strela, V.: Approximation by translates of refinable functions. Numer. Math. 73(1), 75–94 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kaiser, G.: A Friendly Guide to Wavelets. Birkhauser, Basel (1994)

    MATH  Google Scholar 

  11. Keinert, F.: Wavelets and Multiwavelets. Chapman and Hall/CRC, London (2004)

    MATH  Google Scholar 

  12. Laub, A.J.: Matrix Analysis for Scientists and Engineers. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

  13. Markus, A.S.: Introduction to the Spectral Theory of Polynomial Operator Pencils, vol. 71. AMS Bookstore, Providence (1988)

    MATH  Google Scholar 

  14. Plonka, G., Strela, V.: From Wavelets to Multiwavelets. Mathematical Methods for Curves and Surfaces II (eds- M. Dahlen, T. Lyche, L.L. Schumaker), Vanderbilt University Press 1998, Nashville, TN, pp. 1–25 (1997)

    Google Scholar 

  15. Plonka, G., Strela, V.: Construction of multiscaling functions with approximation and symmetry. SIAM J. Math. Anal. 29(2), 481–510 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Sjoestrand, J.: Spectral properties of non-self-adjoint operators. arXiv preprint arXiv:1002.4844 (2010)

    Google Scholar 

  17. Stanimirovic, P., Stankovic, M.: Determinants of rectangular matrices and Moore-Penrose inverse. Novi Sad J. Math 27(1), 53–69 (1997)

    MathSciNet  MATH  Google Scholar 

  18. Strang, G.: Wavelets and dilation equations: a brief introduction. SIAM Rev. 31(4), 614–627 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  19. Strang, G., Strela, V.: Orthogonal multiwavelets with vanishing moments. Opt. Eng. 33(7), 2104–2107 (1994)

    Article  Google Scholar 

  20. Strela, V.: Multiwavelets: regularity, orthogonality and symmetry via two scale similarity transform. Stud. Appl. Math. 98(4), 335–354 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  21. Theys, J.: Joint spectral radius: theory and approximations. Diss. Ph.D. thesis, Universite catholique de Louvain (2005)

    Google Scholar 

  22. Thielemann, H.: Polynomial functions are refinable. arXiv preprint arXiv:1012.2453 (2010)

    Google Scholar 

  23. Turcajova, R.: An algorithm for the construction of symmetric orthogonal multiwavelets. SIAM J. Matrix Anal. Appl. 25(2), 532–550 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  24. Turcajova, R., Kautsky, J.: Block Toeplitz-like operators and multiwavelets. In: SPIE’s 1995 Symposium on OE/Aerospace Sensing and Dual Use Photonics. International Society for Optics and Photonics (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mubeen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Mubeen, M., Narayanan, V. (2014). Inverse Representation Theorem for Matrix Polynomials and Multiscaling Functions. In: Bandt, C., Barnsley, M., Devaney, R., Falconer, K., Kannan, V., Kumar P.B., V. (eds) Fractals, Wavelets, and their Applications. Springer Proceedings in Mathematics & Statistics, vol 92. Springer, Cham. https://doi.org/10.1007/978-3-319-08105-2_20

Download citation

Publish with us

Policies and ethics