Skip to main content

Photodynamic Therapy for Cancer: Principles, Clinical Applications, and Nanotechnological Approaches

  • Chapter
  • First Online:
Book cover Nano-Oncologicals

Abstract

Photodynamic therapy (PDT) is a clinically approved, minimally invasive procedure that can exert a cytotoxic activity toward malignant cells. The procedure involves administration of a photosensitizer (PS) followed by irradiation with light at wavelengths within the PS absorption band. In the presence of oxygen, a series of events lead to direct tumor cell death, damage to the microvasculature, and induction of a local inflammatory reaction. Clinical studies reveal that PDT can be curative, particularly in early stage tumors, can prolong survival in patients with inoperable cancers, and can significantly improve quality of life. Unfortunately, most PS lack specificity for tumor cells and this can result in undesirable side effects in healthy tissues. Furthermore, due to their mostly planar structure, PS form aggregates with low photoactivity in an aqueous environment.

Nanotechnology offers a great opportunity in PDT based on the concept that a nanocarrier can drive therapeutic concentrations of PS to the tumor cells without generating any harmful effect in vivo. Currently, several nanoscale carriers made of different materials such as lipids, polymers, and inorganic materials have been proposed in nano-PDT. Each type of system highlights pros and cons and should be selected on the basis of delivery requirements.

In the following, we describe the principle of PDT and its application in the treatment of cancer. Then, we illustrate the main systems proposed for nano-PDT that demonstrated potential in preclinical models together with emerging concepts for their advanced design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abels C, Szeimies RM, Steinbach P, Richert C, Goetz AE (1997) Targeting of the tumor microcirculation by photodynamic therapy with a synthetic porphycene. J Photochem Photobiol B 40(3):305–312

    PubMed  CAS  Google Scholar 

  • Agostinis P, Berg K, Cengel KA et al (2011) Photodynamic therapy of cancer: an update. CA Cancer J Clin 61(4):250–281

    PubMed  PubMed Central  Google Scholar 

  • Allison RR, Sibata CH (2010) Oncologic photodynamic therapy photosensitizers: a clinical review. Photodiagnosis Photodyn Ther 7(2):61–75

    PubMed  CAS  Google Scholar 

  • Allison RR, Bagnato VS, Sibata CH (2010) Future of oncologic photodynamic therapy. Future Oncol 6(6):929–940

    PubMed  CAS  Google Scholar 

  • Anand S, Ortel BJ, Pereira SP, Hasan T, Maytin EV (2012) Biomodulatory approaches to photodynamic therapy for solid tumors. Cancer Lett 326(1):8–16

    PubMed  CAS  PubMed Central  Google Scholar 

  • Auzel F (2004) Upconversion and anti-Stokes processes with f and d ions in solids. Chem Rev 104(1):139–173

    PubMed  CAS  Google Scholar 

  • Bakalova R, Ohba H, Zhelev Z, Ishikawa M, Baba Y (2004) Quantum dots as photosensitizers? Nat Biotechnol 22(11):1360–1361

    PubMed  CAS  Google Scholar 

  • Balaz M, Collins HA, Dahlstedt E, Anderson HL (2009) Synthesis of hydrophilic conjugated porphyrin dimers for one-photon and two-photon photodynamic therapy at NIR wavelengths. Org Biomol Chem 7(5):874–888

    PubMed  CAS  Google Scholar 

  • Barolet D (2008) Light-emitting diodes (LEDs) in dermatology. Semin Cutan Med Surg 27(4): 227–238

    PubMed  CAS  Google Scholar 

  • Bhuvaneswari R, Gan YY, Soo KC, Olivo M (2009) The effect of photodynamic therapy on tumor angiogenesis. Cell Mol Life Sci 66(14):2275–2283

    PubMed  CAS  Google Scholar 

  • Biel MA (2010) Photodynamic therapy of head and neck cancers. Methods Mol Biol 635:281–293

    PubMed  Google Scholar 

  • Bolfarini GC, Siqueira-Moura MP, Demets GJ, Morais PC, Tedesco AC (2012) In vitro evaluation of combined hyperthermia and photodynamic effects using magnetoliposomes loaded with cucurbituril zinc phthalocyanine complex on melanoma. J Photochem Photobiol B 115:1–4

    PubMed  CAS  Google Scholar 

  • Bovis MJ, Woodhams JH, Loizidou M et al (2012) Improved in vivo delivery of m-THPC via pegylated liposomes for use in photodynamic therapy. J Control Release 157(2):196–205

    PubMed  CAS  Google Scholar 

  • Bown SG, Rogowska AZ, Whitelaw DE et al (2002) Photodynamic therapy for cancer of the pancreas. Gut 50(4):549–557

    PubMed  CAS  PubMed Central  Google Scholar 

  • Buchholz J, Kaser-Hotz B, Khan T et al (2005) Optimizing photodynamic therapy: in vivo pharmacokinetics of liposomal meta-(tetrahydroxyphenyl)chlorin in feline squamous cell carcinoma. Clin Cancer Res 11(20):7538–7544

    PubMed  CAS  Google Scholar 

  • Buytaert E, Dewaele M, Agostinis P (2007) Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta 1776(1):86–107

    PubMed  CAS  Google Scholar 

  • Calzavara-Pinton PG, Venturini M, Sala R (2007) Photodynamic therapy: update 2006. Part 1: Photochemistry and photobiology. J Eur Acad Dermatol Venereol 21(3):293–302

    Google Scholar 

  • Camerin M, Magaraggia M, Soncin M et al (2010) The in vivo efficacy of phthalocyanine-nanoparticle conjugates for the photodynamic therapy of amelanotic melanoma. Eur J Cancer 46(10): 1910–1918

    PubMed  CAS  Google Scholar 

  • Casas A, Perotti C, Saccoliti M et al (2002) ALA and ALA hexyl ester in free and liposomal formulations for the photosensitisation of tumour organ cultures. Br J Cancer 86(5):837–842

    PubMed  CAS  PubMed Central  Google Scholar 

  • Castano AP, Demidova TN, Hamblin MR (2005) Mechanisms in photodynamic therapy: part two-cellular signaling, cell metabolism and modes of cell death. Photodiagnosis Photodyn Ther 2(1):1–23

    PubMed  CAS  PubMed Central  Google Scholar 

  • Castano AP, Mroz P, Hamblin MR (2006) Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer 6(7):535–545

    PubMed  CAS  PubMed Central  Google Scholar 

  • Chatterjee DK, Yong Z (2008) Upconverting nanoparticles as nanotransducers for photodynamic therapy in cancer cells. Nanomedicine (Lond) 3(1):73–82

    CAS  Google Scholar 

  • Chatterjee DK, Fong LS, Zhang Y (2008) Nanoparticles in photodynamic therapy: an emerging paradigm. Adv Drug Deliv Rev 60(15):1627–1637

    PubMed  CAS  Google Scholar 

  • Chen W (2008) Nanoparticle fluorescence based technology for biological applications. J Nanosci Nanotechnol 8(3):1019–1051

    PubMed  CAS  Google Scholar 

  • Chen W, Zhang J (2006) Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J Nanosci Nanotechnol 6(4):1159–1166

    PubMed  CAS  Google Scholar 

  • Chen B, Pogue BW, Hasan T (2005) Liposomal delivery of photosensitising agents. Expert Opin Drug Deliv 2(3):477–487

    PubMed  CAS  Google Scholar 

  • Chen CY, Tian Y, Cheng YJ et al (2007) Two-photon absorbing block copolymer as a nanocarrier for porphyrin: energy transfer and singlet oxygen generation in micellar aqueous solution. J Am Chem Soc 129(23):7220–7221

    PubMed  CAS  Google Scholar 

  • Chen H, Kim S, He W et al (2008) Fast release of lipophilic agents from circulating PEG-PDLLA micelles revealed by in vivo Förster resonance energy transfer imaging. Langmuir 24(10): 5213–5217

    PubMed  CAS  Google Scholar 

  • Chen R, Wang X, Yao X et al (2013) Near-IR-triggered photothermal/photodynamic dual-modality therapy system via chitosan hybrid nanospheres. Biomaterials 34(33):8314–8322

    PubMed  CAS  Google Scholar 

  • Chen Y, Samia AC, Li J et al (2014) Tuning the delivery and PDT efficacy of a cancer drug via the bond to the gold nanoparticle vector. Langmuir

    Google Scholar 

  • Cheng Y, Samia C, Meyers JD et al (2008) Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer. J Am Chem Soc 130(32):10643–10647

    PubMed  CAS  PubMed Central  Google Scholar 

  • Cheng Y, Samia AC, Li J et al (2010) Delivery and efficacy of a cancer drug as a function of the bond to the gold nanoparticle surface. Langmuir 26(4):2248–2255

    PubMed  CAS  Google Scholar 

  • Conte C, Ungaro F, Maglio G et al (2013) Biodegradable core-shell nanoassemblies for the delivery of docetaxel and Zn(II)-phthalocyanine inspired by combination therapy for cancer. J Control Release 167(1):40–52

    PubMed  CAS  Google Scholar 

  • d’Angelo I, Conte C, Miro A, Quaglia F, Ungaro F (2014) Core-shell nanocarriers for cancer therapy. Part I: biologically oriented design rules. Expert Opin Drug Deliv 11:283–297

    Google Scholar 

  • Dahlstedt E, Collins HA, Balaz M et al (2009) One- and two-photon activated phototoxicity of conjugated porphyrin dimers with high two-photon absorption cross sections. Org Biomol Chem 7(5):897–904

    PubMed  CAS  Google Scholar 

  • Dayal S, Burda C (2008) One- and two-photon induced QD-based energy transfer and the influence of multiple QD excitations. Photochem Photobiol Sci 7(5):605–613

    PubMed  CAS  Google Scholar 

  • Derycke AS, de Witte PA (2002) Transferrin-mediated targeting of hypericin embedded in sterically stabilized PEG-liposomes. Int J Oncol 20(1):181–187

    PubMed  CAS  Google Scholar 

  • Derycke AS, de Witte PA (2004) Liposomes for photodynamic therapy. Adv Drug Deliv Rev 56(1):17–30

    PubMed  CAS  Google Scholar 

  • Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA (2012) The golden age: gold nanoparticles for biomedicine. Chem Soc Rev 41(7):2740–2779

    PubMed  CAS  Google Scholar 

  • Eljamel S (2010) Photodynamic applications in brain tumors: a comprehensive review of the literature. Photodiagnosis Photodyn Ther 7(2):76–85

    PubMed  CAS  Google Scholar 

  • Fadel M, Kassab K, Fadeel DA (2010) Zinc phthalocyanine-loaded PLGA biodegradable nanoparticles for photodynamic therapy in tumor-bearing mice. Lasers Med Sci 25(2):283-72

    Google Scholar 

  • Fan C, Wang S, Hong JW et al (2003) Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nanoparticles. Proc Natl Acad Sci U S A 100(11):6297–6301

    PubMed  CAS  PubMed Central  Google Scholar 

  • Fang YP, Tsai YH, Wu PC, Huang YB (2008) Comparison of 5-aminolevulinic acid-encapsulated liposome versus ethosome for skin delivery for photodynamic therapy. Int J Pharm 356(1–2): 144–152

    PubMed  CAS  Google Scholar 

  • Ferrario A, Rucker N, Wong S, Luna M, Gomer CJ (2007) Survivin, a member of the inhibitor of apoptosis family, is induced by photodynamic therapy and is a target for improving treatment response. Cancer Res 67(10):4989–4995

    PubMed  CAS  Google Scholar 

  • Fingar VH (1996) Vascular effects of photodynamic therapy. J Clin Laser Med Surg 14(5):323–328

    PubMed  CAS  Google Scholar 

  • Fingar VH, Wieman TJ, Wiehle SA, Cerrito PB (1992) The role of microvascular damage in photodynamic therapy: the effect of treatment on vessel constriction, permeability, and leukocyte adhesion. Cancer Res 52(18):4914–4921

    PubMed  CAS  Google Scholar 

  • Fraix A, Goncalves AR, Cardile V et al (2013a) A multifunctional bichromophoric nanoaggregate for fluorescence imaging and simultaneous photogeneration of RNOS and ROS. Chem Asian J 8(11):2634–2641

    PubMed  CAS  Google Scholar 

  • Fraix A, Kandoth N, Manet I et al (2013b) An engineered nanoplatform for bimodal anticancer phototherapy with dual-color fluorescence detection of sensitizers. Chem Commun (Camb) 49(40):4459–4461

    CAS  Google Scholar 

  • Friedberg JS (2011) Photodynamic therapy for malignant pleural mesothelioma: the future of treatment? Expert Rev Respir Med 5(1):49–63

    PubMed  Google Scholar 

  • Fukuda H, Casas A, Batlle A (2006) Use of ALA and ALA derivatives for optimizing ALA-based photodynamic therapy: a review of our experience. J Environ Pathol Toxicol Oncol 25(1–2):127–143

    PubMed  CAS  Google Scholar 

  • Fukumura D, Kashiwagi S, Jain RK (2006) The role of nitric oxide in tumour progression. Nat Rev Cancer 6(7):521–534

    PubMed  CAS  Google Scholar 

  • Garcia-Diaz M, Nonell S, Villanueva A et al (2011) Do folate-receptor targeted liposomal photosensitizers enhance photodynamic therapy selectivity? Biochim Biophys Acta 1808(4): 1063–1071

    PubMed  CAS  Google Scholar 

  • Garland MJ, Cassidy CM, Woolfson D, Donnelly RF (2009) Designing photosensitizers for photodynamic therapy: strategies, challenges and promising developments. Future Med Chem 1(4):667–691

    PubMed  CAS  Google Scholar 

  • Gijsens A, Derycke A, Missiaen L et al (2002) Targeting of the photocytotoxic compound AlPcS4 to Hela cells by transferrin conjugated PEG-liposomes. Int J Cancer 101(1):78–85

    PubMed  CAS  Google Scholar 

  • Golab J, Nowis D, Skrzycki M et al (2003) Antitumor effects of photodynamic therapy are potentiated by 2-methoxyestradiol. A superoxide dismutase inhibitor. J Biol Chem 278(1):407–414

    PubMed  Google Scholar 

  • Gollnick SO, Owczarczak B, Maier P (2006) Photodynamic therapy and anti-tumor immunity. Lasers Surg Med 38(5):509–515

    PubMed  Google Scholar 

  • Gomer CJ, Rucker N, Murphree AL (1988) Differential cell photosensitivity following porphyrin photodynamic therapy. Cancer Res 48(16):4539–4542

    PubMed  CAS  Google Scholar 

  • Gref R, Luck M, Quellec P et al (2000) ‘Stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption. Colloids Surf B Biointerfaces 18(3–4):301–313

    PubMed  CAS  Google Scholar 

  • Guelluy PH, Fontaine-Aupart MP, Grammenos A et al (2010) Optimizing photodynamic therapy by liposomal formulation of the photosensitizer pyropheophorbide-a methyl ester: in vitro and ex vivo comparative biophysical investigations in a colon carcinoma cell line. Photochem Photobiol Sci 9(9):1252–1260

    PubMed  CAS  Google Scholar 

  • Gupta S, Dwarakanath BS, Chaudhury NK et al (2011) In vitro and in vivo targeted delivery of photosensitizers to the tumor cells for enhanced photodynamic effects. J Cancer Res Ther 7(3):314–324

    PubMed  Google Scholar 

  • Gupta A, Avci P, Sadasivam M et al (2013) Shining light on nanotechnology to help repair and regeneration. Biotechnol Adv 31:607–631

    Google Scholar 

  • Hanlon JG, Adams K, Rainbow AJ, Gupta RS, Singh G (2001) Induction of Hsp60 by photofrin-mediated photodynamic therapy. J Photochem Photobiol B 64(1):55–61

    PubMed  CAS  Google Scholar 

  • Hone DC, Walker PI, Evans-Gowing R et al (2002) Generation of cytotoxic singlet oxygen via phthalocyanine stabilized gold nanoparticles: a potential delivery vehicle for photodynamic therapy. Langmuir 18(8):2985–2987

    CAS  Google Scholar 

  • Hu Z, Pan Y, Wang J et al (2009) Meso-tetra (carboxyphenyl) porphyrin (TCPP) nanoparticles were internalized by SW480 cells by a clathrin-mediated endocytosis pathway to induce high photocytotoxicity. Biomed Pharmacother 63(2):155–164

    PubMed  CAS  Google Scholar 

  • Huang T, Murray RW (2002) Quenching of Ru(bpy)3 fluorescence by binding to Au nanoparticles. Langmuir 18:7077–7081

    CAS  Google Scholar 

  • Huynh NT, Roger E, Lautram N, Benoit JP, Passirani C (2010) The rise and rise of stealth nanocarriers for cancer therapy: passive versus active targeting. Nanomedicine (Lond) 5(9):1415–1433

    CAS  Google Scholar 

  • Jang WD, Nakagishi Y, Nishiyama N et al (2006) Polyion complex micelles for photodynamic therapy: incorporation of dendritic photosensitizer excitable at long wavelength relevant to improved tissue-penetrating property. J Control Release 113(1):73–79

    PubMed  CAS  Google Scholar 

  • Jang B, Park JY, Tung CH, Kim IH, Choi Y (2011) Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. ACS Nano 5(2):1086–1094

    PubMed  CAS  Google Scholar 

  • Jiang F, Lilge L, Logie B, Li Y, Chopp M (1997) Photodynamic therapy of 9L gliosarcoma with liposome-delivered photofrin. Photochem Photobiol 65(4):701–706

    PubMed  CAS  Google Scholar 

  • Jiang F, Lilge L, Grenier J et al (1998) Photodynamic therapy of U87 human glioma in nude rat using liposome-delivered photofrin. Lasers Surg Med 22(2):74–80

    PubMed  CAS  Google Scholar 

  • Kandoth N, Vittorino E, Sciortino MT et al (2012) A cyclodextrin-based nanoassembly with bimodal photodynamic action. Chemistry 18(6):1684–1690

    PubMed  CAS  Google Scholar 

  • Kessel D (2006) Death pathways associated with photodynamic therapy. Med Laser Appl 21(4):219–224

    PubMed  PubMed Central  Google Scholar 

  • Kessel D, Castelli M (2001) Evidence that bcl-2 is the target of three photosensitizers that induce a rapid apoptotic response. Photochem Photobiol 74(2):318–322

    PubMed  CAS  Google Scholar 

  • Kessel D, Erickson C (1992) Porphyrin photosensitization of multi-drug resistant cell types. Photochem Photobiol 55(3):397–399

    PubMed  CAS  Google Scholar 

  • Khaing Oo MK, Yang Y, Hu Y et al (2012) Gold nanoparticle-enhanced and size-dependent generation of reactive oxygen species from protoporphyrin IX. ACS Nano 6(3):1939–1947

    PubMed  CAS  Google Scholar 

  • Khdair A, Chen D, Patil Y et al (2010) Nanoparticle-mediated combination chemotherapy and photodynamic therapy overcomes tumor drug resistance. J Control Release 141(2):137–144

    PubMed  CAS  PubMed Central  Google Scholar 

  • Khlebtsov B, Panfilova E, Khanadeev V et al (2011) Nanocomposites containing silica-coated gold-silver nanocages and Yb-2,4-dimethoxyhematoporphyrin: multifunctional capability of IR-luminescence detection, photosensitization, and photothermolysis. ACS Nano 5(9): 7077–7089

    PubMed  CAS  Google Scholar 

  • Kim S, Ohulchanskyy TY, Pudavar HE, et al (2007) Organically modified silica nanoparticles co-encapsulating photosensitizing drug and aggregation-enhanced two-photon absorbing fluorescent dye aggregates for two photon photodynamic therapy. J Am Chem Soc 129(9):2669–2675

    Google Scholar 

  • Knop K, Mingotaud AF, El-Akra N, Violleau F, Souchard JP (2009) Monomeric pheophorbide(a)-containing poly(ethyleneglycol-b-epsilon-caprolactone) micelles for photodynamic therapy. Photochem Photobiol Sci 8(3):396–404

    PubMed  CAS  Google Scholar 

  • Konan YN, Cerny R, Favet J et al (2003) Preparation and characterization of sterile sub-200 nm meso-tetra(4-hydroxylphenyl)porphyrin-loaded nanoparticles for photodynamic therapy. Eur J Pharm Biopharm 55(1):115–124

    PubMed  CAS  Google Scholar 

  • Konan-Kouakou YN, Boch R, Gurny R, Allemann E (2005) In vitro and in vivo activities of verteporfin-loaded nanoparticles. J Control Release 103(1):83–91

    PubMed  CAS  Google Scholar 

  • Koo YE, Reddy GR, Bhojani M et al (2006) Brain cancer diagnosis and therapy with nanoplatforms. Adv Drug Deliv Rev 58(14):1556–1577

    PubMed  CAS  Google Scholar 

  • Korbelik M (2006) PDT-associated host response and its role in the therapy outcome. Lasers Surg Med 38(5):500–508

    PubMed  Google Scholar 

  • Korbelik M, Madiyalakan R, Woo T, Haddadi A (2012) Antitumor efficacy of photodynamic therapy using novel nanoformulations of hypocrellin photosensitizer SL052. Photochem Photobiol 88(1):188–193

    PubMed  CAS  Google Scholar 

  • Kostron H (2010) Photodynamic diagnosis and therapy and the brain. Methods Mol Biol 635:261–280

    PubMed  CAS  Google Scholar 

  • Krammer B (2001) Vascular effects of photodynamic therapy. Anticancer Res 21(6B):4271–4277

    PubMed  CAS  Google Scholar 

  • Kreimer-Birnbaum M (1989) Modified porphyrins, chlorins, phthalocyanines, and purpurins: second-generation photosensitizers for photodynamic therapy. Semin Hematol 26(2):157–173

    PubMed  CAS  Google Scholar 

  • Krosl G, Korbelik M, Dougherty GJ (1995) Induction of immune cell infiltration into murine SCCVII tumor by photofrin-based photodynamic therapy. Br J Cancer 71(3):549–555

    PubMed  CAS  PubMed Central  Google Scholar 

  • Kuimova MK, Yahioglu G, Ogilby PR (2008) Singlet oxygen in a cell: spatially dependent lifetimes and quenching rate constants. J Am Chem Soc 131(1):332–340

    Google Scholar 

  • Kuntsche J, Freisleben I, Steiniger F, Fahr A (2010) Temoporfin-loaded liposomes: physicochemical characterization. Eur J Pharm Sci 40(4):305–315

    PubMed  CAS  Google Scholar 

  • Labib A, Lenaerts V, Chouinard F et al (1991) Biodegradable nanospheres containing phthalocyanines and naphthalocyanines for targeted photodynamic tumor therapy. Pharm Res 8(8): 1027–1031

    PubMed  CAS  Google Scholar 

  • Lee YE, Kopelman R (2011) Polymeric nanoparticles for photodynamic therapy. Methods Mol Biol 726:151–178

    PubMed  CAS  Google Scholar 

  • Lee SJ, Koo H, Jeong H et al (2011a) Comparative study of photosensitizer loaded and conjugated glycol chitosan nanoparticles for cancer therapy. J Control Release 152(1):21–29

    PubMed  CAS  Google Scholar 

  • Lee SJ, Koo H, Lee DE et al (2011b) Tumor-homing photosensitizer-conjugated glycol chitosan nanoparticles for synchronous photodynamic imaging and therapy based on cellular on/off system. Biomaterials 32(16):4021–4029

    PubMed  CAS  Google Scholar 

  • Lehar J, Krueger AS, Avery W et al (2009) Synergistic drug combinations tend to improve therapeutically relevant selectivity. Nat Biotechnol 27(7):659–666

    PubMed  CAS  PubMed Central  Google Scholar 

  • Leunig M, Richert C, Gamarra F et al (1993) Tumour localisation kinetics of photofrin and three synthetic porphyrinoids in an amelanotic melanoma of the hamster. Br J Cancer 68(2):225–234

    PubMed  CAS  PubMed Central  Google Scholar 

  • Li B, Moriyama EH, Li F et al (2007) Diblock copolymer micelles deliver hydrophobic protoporphyrin IX for photodynamic therapy. Photochem Photobiol 83(6):1505–1512

    PubMed  CAS  Google Scholar 

  • Li L, Zhao JF, Won N et al (2012) Quantum dot-aluminum phthalocyanine conjugates perform photodynamic reactions to kill cancer cells via fluorescence resonance energy transfer (FRET). Nanoscale Res Lett 7(1):386

    PubMed  PubMed Central  Google Scholar 

  • Lim JI (2002) Photodynamic therapy for choroidal neovascular disease: photosensitizers and clinical trials. Ophthalmol Clin North Am 15(4):473–478, vii

    PubMed  Google Scholar 

  • Liu W, Baer MR, Bowman MJ et al (2007) The tyrosine kinase inhibitor imatinib mesylate enhances the efficacy of photodynamic therapy by inhibiting ABCG2. Clin Cancer Res 13(8):2463–2470

    PubMed  CAS  Google Scholar 

  • Maeda H (2012) Macromolecular therapeutics in cancer treatment: the EPR effect and beyond. J Control Release 164(2):138–144

    PubMed  CAS  Google Scholar 

  • Maeda H, Nakamura H, Fang J (2013) The EPR effect for macromolecular drug delivery to solid tumors: improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv Drug Deliv Rev 65(1):71–79

    PubMed  CAS  Google Scholar 

  • Mazzaglia A (2011) In: Bilensoy E (ed) Cyclodextrins in pharmaceutics, cosmetics, and biomedicine: current and future industrial applications. Wiley, New York, pp 343–361

    Google Scholar 

  • Mazzaglia A, Valerio A, Micali N et al (2011) Effective cell uptake of nanoassemblies of a fluorescent amphiphilic cyclodextrin and an anionic porphyrin. Chem Commun 47(32): 9140–9142

    CAS  Google Scholar 

  • Mazzaglia A, Sciortino MT, Kandoth N, Sortino S (2012) Cyclodextrin-based nanoconstructs for photoactivated therapies. J Drug Deliv Sci Technol 22(3):235–242

    CAS  Google Scholar 

  • Minnich DJ, Bryant AS, Dooley A, Cerfolio RJ (2010) Photodynamic laser therapy for lesions in the airway. Ann Thorac Surg 89(6):1744–1748

    PubMed  Google Scholar 

  • Mir Y, Elrington SA, Hasan T (2013) A new nanoconstruct for epidermal growth factor receptor-targeted photo-immunotherapy of ovarian cancer. Nanomedicine 9(7):1114–1122

    PubMed  CAS  PubMed Central  Google Scholar 

  • Moret F, Scheglmann D, Reddi E (2013) Folate-targeted PEGylated liposomes improve the selectivity of PDT with meta-tetra(hydroxyphenyl)chlorin (m-THPC). Photochem Photobiol Sci 12(5):823–834

    PubMed  CAS  Google Scholar 

  • Nakagawa T, Shimizu S, Watanabe T et al (2005) Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 434(7033):652–658

    PubMed  CAS  Google Scholar 

  • Nishiyama N, Nakagishi Y, Morimoto Y et al (2009) Enhanced photodynamic cancer treatment by supramolecular nanocarriers charged with dendrimer phthalocyanine. J Control Release 133(3):245–251

    PubMed  CAS  Google Scholar 

  • Nokes B, Apel M, Jones C, Brown G, Lang JE (2013) Aminolevulinic acid (ALA): photodynamic detection and potential therapeutic applications. J Surg Res 181(2):262–271

    PubMed  CAS  Google Scholar 

  • Nonaka M, Ikeda H, Inokuchi T (2004) Inhibitory effect of heat shock protein 70 on apoptosis induced by photodynamic therapy in vitro. Photochem Photobiol 79(1):94–98

    PubMed  CAS  Google Scholar 

  • Nowis D, Makowski M, Stoklosa T et al (2005) Direct tumor damage mechanisms of photodynamic therapy. Acta Biochim Pol 52(2):339–352

    PubMed  CAS  Google Scholar 

  • O’Connor AE, Gallagher WM, Byrne AT (2009) Porphyrin and nonporphyrin photosensitizers in oncology: preclinical and clinical advances in photodynamic therapy. Photochem Photobiol 85(5):1053–1074

    PubMed  Google Scholar 

  • Ohulchanskyy TY, Roy I, Goswami LN et al (2007) Organically modified silica nanoparticles with covalently incorporated photosensitizer for photodynamic therapy of cancer. Nano Lett 7(9):2835–2842

    PubMed  CAS  Google Scholar 

  • Oleinick NL, Morris RL, Belichenko I (2002) The role of apoptosis in response to photodynamic therapy: what, where, why, and how. Photochem Photobiol Sci 1(1):1–21

    PubMed  CAS  Google Scholar 

  • Ortner MA (2011) Photodynamic therapy for cholangiocarcinoma. Lasers Surg Med 43(7):776–780

    PubMed  Google Scholar 

  • Parhi P, Mohanty C, Sahoo SK (2012) Nanotechnology-based combinational drug delivery: an emerging approach for cancer therapy. Drug Discov Today 17(17–18):1044–1052

    PubMed  CAS  Google Scholar 

  • Pegaz B, Debefve E, Ballini JP et al (2006) Photothrombic activity of m-THPC-loaded liposomal formulations: pre-clinical assessment on chick chorioallantoic membrane model. Eur J Pharm Sci 28(1–2):134–140

    PubMed  CAS  Google Scholar 

  • Petri A, Yova D, Alexandratou E, Kyriazi M, Rallis M (2012) Comparative characterization of the cellular uptake and photodynamic efficiency of Foscan(R) and Fospeg in a human prostate cancer cell line. Photodiagnosis Photodyn Ther 9(4):344–354

    PubMed  CAS  Google Scholar 

  • Pizova K, Tomankova K, Daskova A et al (2012) Photodynamic therapy for enhancing antitumour immunity. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 156(2):93–102

    PubMed  CAS  Google Scholar 

  • Qualls MM, Thompson DH (2001) Chloroaluminum phthalocyanine tetrasulfonate delivered via acid-labile diplasmenylcholine-folate liposomes: intracellular localization and synergistic phototoxicity. Int J Cancer 93(3):384–392

    PubMed  CAS  Google Scholar 

  • Reddy GR, Bhojani MS, McConville P et al (2006) Vascular targeted nanoparticles for imaging and treatment of brain tumors. Clin Cancer Res 12(22):6677–6686

    PubMed  CAS  Google Scholar 

  • Reiners JJ Jr, Agostinis P, Berg K, Oleinick NL, Kessel D (2010) Assessing autophagy in the context of photodynamic therapy. Autophagy 6(1):7–18

    PubMed  CAS  PubMed Central  Google Scholar 

  • Reza SM, Tabatabaie RM, Maharramov A, Ali RM (2011) Synthesis and in vitro studies of biodegradable modified chitosan nanoparticles for photodynamic treatment of cancer. Int J Biol Macromol 49(5):1059–1065

    Google Scholar 

  • Ricci-Junior E, Marchetti JM (2006) Zinc(II) phthalocyanine loaded PLGA nanoparticles for photodynamic therapy use. Int J Pharm 310(1–2):187–195

    PubMed  CAS  Google Scholar 

  • Rijcken CJ, Hofman JW, van Zeeland F, Hennink WE, van Nostrum CF (2007) Photosensitiser-loaded biodegradable polymeric micelles: preparation, characterisation and in vitro PDT efficacy. J Control Release 124(3):144–153

    Google Scholar 

  • Robertson CA, Evans DH, Abrahamse H (2009) Photodynamic therapy (PDT): a short review on cellular mechanisms and cancer research applications for PDT. J Photochem Photobiol B 96(1):1–8

    PubMed  CAS  Google Scholar 

  • Roby A, Erdogan S, Torchilin VP (2006) Solubilization of poorly soluble PDT agent, meso-tetraphenylporphin, in plain or immunotargeted PEG-PE micelles results in dramatically improved cancer cell killing in vitro. Eur J Pharm Biopharm 62(3):235–240

    PubMed  CAS  PubMed Central  Google Scholar 

  • Rojnik M, Kocbek P, Moret F et al (2012) In vitro and in vivo characterization of temoporfin-loaded PEGylated PLGA nanoparticles for use in photodynamic therapy. Nanomedicine (Lond) 7(5):663–677

    CAS  Google Scholar 

  • Roy I, Ohulchanskyy TY, Pudavar HE et al (2003) Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J Am Chem Soc 125(26):7860–7865

    PubMed  CAS  Google Scholar 

  • Samia AC, Chen X, Burda C (2003) Semiconductor quantum dots for photodynamic therapy. J Am Chem Soc 125(51):15736–15737

    PubMed  CAS  Google Scholar 

  • Samia AC, Dayal S, Burda C (2006) Quantum dot-based energy transfer: perspectives and potential for applications in photodynamic therapy. Photochem Photobiol 82(3):617–625

    PubMed  CAS  Google Scholar 

  • Sandell JL, Zhu TC (2011) A review of in-vivo optical properties of human tissues and its impact on PDT. J Biophotonics 4(11–12):773–787

    PubMed  PubMed Central  Google Scholar 

  • Sapsford KE, Berti L, Medintz IL (2006a) Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. Angew Chem Int Ed Engl 45(28):4562–4588

    PubMed  CAS  Google Scholar 

  • Sapsford KE, Pons T, Medintz IL, Mattoussi H (2006b) Biosensing with luminescent semiconductor quantum dots. Sensors (Basel) 6(8):925–953

    CAS  Google Scholar 

  • Saxena V, Sadoqi M, Shao J (2006) Polymeric nanoparticulate delivery system for Indocyanine green: biodistribution in healthy mice. Int J Pharm 308(1–2):200–204

    PubMed  CAS  Google Scholar 

  • Sessler JL, Miller RA (2000) Texaphyrins: new drugs with diverse clinical applications in radiation and photodynamic therapy. Biochem Pharmacol 59(7):733–739

    PubMed  CAS  Google Scholar 

  • Shi L, Hernandez B, Selke M (2006) Singlet oxygen generation from water-soluble quantum dot-organic dye nanocomposites. J Am Chem Soc 128(19):6278–6279

    PubMed  CAS  PubMed Central  Google Scholar 

  • Shieh MJ, Peng CL, Chiang WL et al (2010) Reduced skin photosensitivity with meta-tetra(hydroxyphenyl)chlorin-loaded micelles based on a poly(2-ethyl-2-oxazoline)-b-poly(d,l-lactide) diblock copolymer in vivo. Mol Pharm 7(4):1244–1253

    PubMed  CAS  Google Scholar 

  • Sibata MN, Tedesco AC, Marchetti JM (2004) Photophysicals and photochemicals studies of zinc(II) phthalocyanine in long time circulation micelles for photodynamic therapy use. Eur J Pharm Sci 23(2):131–138

    PubMed  CAS  Google Scholar 

  • Simone CB, Friedberg JS, Glatstein E et al (2012) Photodynamic therapy for the treatment of non-small cell lung cancer. J Thorac Dis 4(1):63–75

    PubMed  CAS  PubMed Central  Google Scholar 

  • Skupin-Mrugalska P, Piskorz J, Goslinski T et al (2013) Current status of liposomal porphyrinoid photosensitizers. Drug Discov Today 18(15–16):776–784

    PubMed  CAS  Google Scholar 

  • Soriano J, Villanueva A, Stockert JC, Canete M (2013) Vehiculization determines the endocytic internalization mechanism of Zn(II)-phthalocyanine. Histochem Cell Biol 139(1):149–160

    PubMed  CAS  Google Scholar 

  • Sortino S (2010) Light-controlled nitric oxide delivering molecular assemblies. Chem Soc Rev 39(8):2903–2913

    PubMed  CAS  Google Scholar 

  • Sortino S, Mazzaglia A, Monsù Scolaro L et al (2006) Nanoparticles of cationic amphiphilic cyclodextrins entangling anionic porphyrins as carrier-sensitizer system in photodynamic cancer therapy. Biomaterials 27(23):4256–4265

    Google Scholar 

  • Sousa CRE (2004) Activation of dendritic cells: translating innate into adaptive immunity. Curr Opin Immunol 16(1):21–25

    Google Scholar 

  • Staneloudi C, Smith KA, Hudson R et al (2007) Development and characterization of novel photosensitizer : scFv conjugates for use in photodynamic therapy of cancer. Immunology 120(4):512–517

    PubMed  CAS  PubMed Central  Google Scholar 

  • Sutoris K, Rakusan J, Karaskova M et al (2013) Novel topical photodynamic therapy of prostate carcinoma using hydroxy-aluminum phthalocyanine entrapped in liposomes. Anticancer Res 33(4):1563–1568

    PubMed  CAS  Google Scholar 

  • Swaminathan S, Garcia-Amoros J, Fraix A et al (2014) Photoresponsive polymer nanocarriers with multifunctional cargo. Chem Soc Rev 43:4167–4178

    Google Scholar 

  • Szokalska A, Makowski M, Nowis D et al (2009) Proteasome inhibition potentiates antitumor effects of photodynamic therapy in mice through induction of endoplasmic reticulum stress and unfolded protein response. Cancer Res 69(10):4235–4243

    PubMed  CAS  PubMed Central  Google Scholar 

  • Tang W, Xu H, Kopelman R, Philbert MA (2005) Photodynamic characterization and in vitro application of methylene blue-containing nanoparticle platforms. Photochem Photobiol 81(2):242–249

    PubMed  CAS  Google Scholar 

  • Tang W, Xu H, Park EJ, Philbert MA, Kopelman R (2008) Encapsulation of methylene blue in polyacrylamide nanoparticle platforms protects its photodynamic effectiveness. Biochem Biophys Res Commun 369(2):579–583

    PubMed  CAS  PubMed Central  Google Scholar 

  • Trapani M, Romeo A, Parisi T et al (2013) Supramolecular hybrid assemblies based on gold nanoparticles, amphiphilic cyclodextrin and porphyrins with combined phototherapeutic action. RSC Adv 3:5607–5614

    Google Scholar 

  • van Duijnhoven FH, Aalbers RI, Rovers JP, Terpstra OT, Kuppen PJ (2003) The immunological consequences of photodynamic treatment of cancer, a literature review. Immunobiology 207(2):105–113

    PubMed  Google Scholar 

  • Vanlangenakker N, Vanden Berghe T, Krysko DV, Festjens N, Vandenabeele P (2008) Molecular mechanisms and pathophysiology of necrotic cell death. Curr Mol Med 8(3):207–220

    PubMed  CAS  Google Scholar 

  • Vargas A, Pegaz B, Debefve E et al (2004) Improved photodynamic activity of porphyrin loaded into nanoparticles: an in vivo evaluation using chick embryos. Int J Pharm 286(1–2):131–145

    PubMed  CAS  Google Scholar 

  • Vogel A, Venugopalan V (2003) Mechanisms of pulsed laser ablation of biological tissues. Chem Rev 103(2):577–644

    PubMed  CAS  Google Scholar 

  • Wang M, Thanou M (2010) Targeting nanoparticles to cancer. Pharmacol Res 62(2):90–99

    PubMed  CAS  Google Scholar 

  • Warren CB, Karai LJ, Vidimos A, Maytin EV (2009) Pain associated with aminolevulinic acid-photodynamic therapy of skin disease. J Am Acad Dermatol 61(6):1033–1043

    PubMed  CAS  PubMed Central  Google Scholar 

  • Weiss A, den Bergh Hv, Griffioen AW, Nowak-Sliwinska P (2012) Angiogenesis inhibition for the improvement of photodynamic therapy: the revival of a promising idea. Biochim Biophys Acta 1826(1):53–70

    Google Scholar 

  • Wiedmann MW, Caca K (2004) General principles of photodynamic therapy (PDT) and gastrointestinal applications. Curr Pharm Biotechnol 5(4):397–408

    PubMed  CAS  Google Scholar 

  • Wu J, Xu H, Tang W et al (2009) Eradication of bacteria in suspension and biofilms using methylene blue-loaded dynamic nanoplatforms. Antimicrob Agents Chemother 53(7):3042–3048

    PubMed  CAS  PubMed Central  Google Scholar 

  • Xue LY, Chiu SM, Oleinick NL (2001) Photochemical destruction of the Bcl-2 oncoprotein during photodynamic therapy with the phthalocyanine photosensitizer Pc 4. Oncogene 20(26): 3420–3427

    PubMed  CAS  Google Scholar 

  • Zeisser-Labouebe M, Lange N, Gurny R, Delie F (2006) Hypericin-loaded nanoparticles for the photodynamic treatment of ovarian cancer. Int J Pharm 326(1–2):174–181

    PubMed  CAS  Google Scholar 

  • Zhang P, Steelant W, Kumar M, Scholfield M (2007) Versatile photosensitizers for photodynamic therapy at infrared excitation. J Am Chem Soc 129(15):4526–4527

    PubMed  CAS  PubMed Central  Google Scholar 

  • Zuluaga MF, Lange N (2008) Combination of photodynamic therapy with anti-cancer agents. Curr Med Chem 15(17):1655–1673

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiana Quaglia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Controlled Release Society

About this chapter

Cite this chapter

Conte, C., Ungaro, F., Mazzaglia, A., Quaglia, F. (2014). Photodynamic Therapy for Cancer: Principles, Clinical Applications, and Nanotechnological Approaches. In: Alonso, M., Garcia-Fuentes, M. (eds) Nano-Oncologicals. Advances in Delivery Science and Technology. Springer, Cham. https://doi.org/10.1007/978-3-319-08084-0_5

Download citation

Publish with us

Policies and ethics