Advertisement

Towards Establishing Clinical Guidelines for an Arm Rehabilitation Virtual Reality System

  • Philippe S. Archambault
  • Nahid Gheidari Norouzi
  • Dahlia Kairy
  • John M. Solomon
  • Mindy F. Levin
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 7)

Abstract

Virtual reality (VR) can promote functional rehabilitation of arm movements through environments allowing the practice of a variety of tasks while providing feedback. We evaluated an affordable VR system for arm rehabilitation, developed by Jintronix Inc, based on the Microsoft Kinect and providing three unilateral and two bilateral activities, each with ten difficulty levels. Our objectives were to 1) determine which activities and levels of difficulty are appropriate for rehabilitation of arm movements in stroke patients with different degrees of motor impairment; and 2) determine the ease of use and subjective experience of patients using the VR arm rehabilitation system. Stroke patients participated in three 20-minute practice sessions supervised by a rehabilitation professional. We determined the highest level of difficulty attained by patients in each activity with a performance score of at least 50% and mapped these to arm impairment level according to the Chedoke-McMaster Arm Scale. Over 80% of the participants provided positive feedback in terms of ease of use and VR experience. Our data demonstrate the feasibility of using an affordable VR arm rehabilitation system in a clinical setting and provide clinical guidelines for the selection of impairment-specific difficulty levels.

Keywords

Virtual Reality Stroke Patient Difficulty Level Virtual Reality System Rehabilitation System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mayo, N.E., Neville, D., Kirkland, S., Ostbye, T., Mustard, C.A., Reeder, B., Joffres, M., Brauer, G., Levy, A.R.: Hospitalization and case-fatality rates for stroke in Canada from 1982 through 1991. The Canadian Collaborative Study Group of Stroke Hospitalizations. Stroke 27(7), 1215–1220 (1996)CrossRefGoogle Scholar
  2. 2.
    Michaelsen, S.M., Dannenbaum, R., Levin, M.F.: Task-specific training with trunk restraint on arm recovery in stroke: randomized control trial. Stroke 37(1), 186–192 (2006)CrossRefGoogle Scholar
  3. 3.
    Wolf, S.L., Winstein, C.J., Miller, J.P., Taub, E., Uswatte, G., Morris, D., Giuliani, C., Light, K.E., Nichols-Larsen, D.: Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA 296(17), 2095–2104 (2006)CrossRefGoogle Scholar
  4. 4.
    Nudo, R.J.: Adaptive plasticity in motor cortex: implications for rehabilitation after brain injury. Journal of Rehabilitation Medicine: Official Journal of the UEMS European Board of Physical and Rehabilitation Medicine (41 suppl.), 7–10 (2003)Google Scholar
  5. 5.
    Schmidt, R.A., Lee, T.D.: Motor control and learning: a behavioral emphasis. Human Kinetics, 4th edn. (2005)Google Scholar
  6. 6.
    Winstein, C.J.: Knowledge of results and motor learning–implications for physical therapy. Physical Therapy 71(2), 140–149 (1991)Google Scholar
  7. 7.
    Kleim, J.A., Jones, T.A.: Principles of experience-dependent neural plasticity: implications for rehabilitation after brain damage. J. Speech Lang. Hear. Res. 51(1), S225–S239 (2008)Google Scholar
  8. 8.
    Rose, F.D., Brooks, B.M., Rizzo, A.A.: Virtual reality in brain damage rehabilitation: review. Cyberpsychol. Behav. 8(3), 241–262 (2005); discussion 263-271Google Scholar
  9. 9.
    Weiss, P.L., Kedar, R., Shahar, M.: TIES that BIND: an introduction to domain mapping as a visualization tool for virtual rehabilitation. Cyberpsychol. Behav. 9(2), 114–122 (2006)CrossRefGoogle Scholar
  10. 10.
    Proteau, L., Blandin, Y., Alain, C., Dorion, A.: The effects of the amount and variability of practice on the learning of a multi-segmented motor task. Acta Psychol. 85(1), 61–74 (1994)CrossRefGoogle Scholar
  11. 11.
    Winstein, C.J., Merians, A.S., Sullivan, K.J.: Motor learning after unilateral brain damage. Neuropsychologia 37(8), 975–987 (1999)CrossRefGoogle Scholar
  12. 12.
    Winstein, C.J., Miller, J.P., Blanton, S., Taub, E., Uswatte, G., Morris, D., Nichols, D., Wolf, S.: Methods for a multisite randomized trial to investigate the effect of constraint-induced movement therapy in improving upper extremity function among adults recovering from a cerebrovascular stroke. Neurorehabil. Neural Repair 17(3), 137–152 (2003)CrossRefGoogle Scholar
  13. 13.
    Deutsch, J.E., Merians, A.S., Adamovich, S., Poizner, H., Burdea, G.C.: Development and application of virtual reality technology to improve hand use and gait of individuals post-stroke. Restorative Neurology and Neuroscience 22(3-5), 371–386 (2004)Google Scholar
  14. 14.
    Henderson, A., Korner-Bitensky, N., Levin, M.: Virtual reality in stroke rehabilitation: a systematic review of its effectiveness for upper limb motor recovery. Top Stroke Rehabil. 14(2), 52–61 (2007)CrossRefGoogle Scholar
  15. 15.
    Holden, M.K.: Virtual environments for motor rehabilitation: review. Cyberpsychol. Behav. 8(3), 187–211 (2005); discussion 212-189Google Scholar
  16. 16.
    Sin, H., Lee, G.: Additional virtual reality training using Xbox Kinect in stroke survivors with hemiplegia. Am. J. Phys. Med. Rehabil. 92(10), 871–880 (2013)CrossRefGoogle Scholar
  17. 17.
    Mousavi Hondori, H., Khademi, M., Dodakian, L., Cramer, S.C., Lopes, C.V.: A Spatial Augmented Reality rehab system for post-stroke hand rehabilitation. Stud. Health Technol. Inform. 184, 279–285 (2013)Google Scholar
  18. 18.
    Glegg, S.M., Tatla, S.K., Holsti, L.: The GestureTek virtual reality system in rehabilitation: a scoping review. Disabil. Rehabil. Assist. Technol. 9(2), 89–111 (2014)CrossRefGoogle Scholar
  19. 19.
  20. 20.
  21. 21.
    Gowland, C., Stratford, P., Ward, M., Moreland, J., Torresin, W., Van Hullenaar, S., Sanford, J., Barreca, S., Vanspall, B., Plews, N.: Measuring physical impairment and disability with the Chedoke-McMaster Stroke Assessment. Stroke 24(1), 58–63 (1993)CrossRefGoogle Scholar
  22. 22.
    Davis, F.D.: Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 319–340 (1989)Google Scholar
  23. 23.
    Kizony, R., Katz, N., Weiss, P.L.: Adapting an immersive virtual reality system for rehabilitation. The Journal of Visualization and Computer Animation 14(5), 261–268 (2003)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Philippe S. Archambault
    • 1
    • 2
  • Nahid Gheidari Norouzi
    • 1
    • 2
  • Dahlia Kairy
    • 3
    • 4
  • John M. Solomon
    • 5
  • Mindy F. Levin
    • 1
    • 2
  1. 1.School of Physical and Occupational TherapyMcGill UniversityMontrealCanada
  2. 2.Interdisciplinary Research Center in Rehabilitation (CRIR)MontrealCanada
  3. 3.School of RehabilitationUniversity of MontrealMontrealCanada
  4. 4.CRIRMontrealCanada
  5. 5.Department of Physical TherapyManipal UniversityManipalIndia

Personalised recommendations