Exotendon Glove System for Finger Rehabilitation after Stroke

  • Shunji Moromugi
  • Toshio Higashi
  • Ryo Ishikawa
  • Seiya Kudo
  • Naoki Iso
  • Shirou Ooso
  • Takeaki Shirotani
  • Murray J. Lawn
  • Takakazu Ishimatsu
Part of the Biosystems & Biorobotics book series (BIOSYSROB, volume 7)

Abstract

An innovative electric-powered glove system has been prototyped to support finger rehabilitation for people with motor impairment on their fingers after a stroke. This glove system is composed of a leather glove which has a unique actuation mechanism called an exotendon system, a muscle activity sensor is fixed on the upper forearm to detect user’s efforts during finger exercises and a controller including a microcomputer and a drive unit. An evaluation has been conducted based on A-B design of a single subject study and it has been observed that finger exercises carried out using the prototyped glove system has effectively improved the finger functionality of a stroke patient.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Riener, R., Nef, T., Colombo, G.: Robot-aided neurorehabilitation of the upper extremities. Med. Biol. Eng. Comput. 43, 2–10 (2005)CrossRefGoogle Scholar
  2. 2.
    Aoyagi, D., Ichinose, W.E., Harkema, S.J., Reinkensmeyer, D.J., Bobrow, J.E.: A robot and control algorithm that can synchronously assist in naturalistic motion during body weight supported gait training following neurologic injury. IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 387–400 (2007)CrossRefGoogle Scholar
  3. 3.
    Banala, S.K., Agrawal, S.K., Seok, H.K., Scholz, J.P.: Novel gait adaptation and neuromotor training results using an active Leg exoskeleton. IEEE/ASME Trans. Mechatronics 15, 216–225 (2010)CrossRefGoogle Scholar
  4. 4.
    Mouri, T., Kawasaki, H., Nishimoto, Y., Aoki, T., Ishigure, Y., Tanahashi, M.: Robot Hand Imitating Disabled Person for Education/Training of Rehabilitation. Journal of Robotics and Mechatronics 20(2), 280–288 (2008)Google Scholar
  5. 5.
    Connelly, L., Jia, Y., Toro, M.L., Stoykov, M.E., Kenyon, R.V., Kamper, D.G.: A pneumatic glove and immersive virtual reality environment for hand rehabilitative training after stroke. IEEE Trans. Neural Syst. Rehabil. Eng. 18(5), 551–559 (2010)CrossRefGoogle Scholar
  6. 6.
    Moromugi, S., Koujina, Y., Ariki, S., Okamoto, A., Tanaka, T., Feng, M.Q., Ishimatsu, T.: Muscle stiffness sensor to control an assistance device for disabled. Artificial Life and Robotics 8, 42–45 (2004)CrossRefGoogle Scholar
  7. 7.
    Nourbakhsh, M.R., Ottenbacher, K.J.: The Statistical Analysis of Single-Subject Data: A Comparative Examination. Physical Therapy 74, 768–776 (1994)Google Scholar
  8. 8.
    Fugl-Meyer, A.R., Jaasko, L., Leyman, I., Olsson, S., Steglind, S.: The post stroke hemiplegic patient. I. A method for evaluation of physical performance. Scand. J. Rehabil. Med. 7, 13–31 (1975)Google Scholar
  9. 9.
    Hatanaka, T., Koyama, T., Kanematsu, M., Takahashi, N., Matsumoto, K., Domen, K.: A new evaluation method for upper extremity dexterity of patients with hemiparesis after stroke: the 10 second tests. International Journal of Rehabilitation Research 30(3), 243–247 (2007)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Shunji Moromugi
    • 1
  • Toshio Higashi
    • 2
  • Ryo Ishikawa
    • 3
  • Seiya Kudo
    • 3
  • Naoki Iso
    • 4
  • Shirou Ooso
    • 4
  • Takeaki Shirotani
    • 5
  • Murray J. Lawn
    • 2
  • Takakazu Ishimatsu
    • 3
  1. 1.Faculty of Science and EngineeringChuo UniversityTokyoJapan
  2. 2.Graduate School of Biomedical ScienceNagasaki UniversityNagasakiJapan
  3. 3.Graduate School of EngineeringNagasaki UniversityNagasakiJapan
  4. 4.Miharadai HospitalNagasakiJapan
  5. 5.Geriatric Health Service Facility MiharanosonoNagasakiJapan

Personalised recommendations