Skip to main content

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 7))

  • 2292 Accesses

Abstract

Recently developed state of the art upper extremity prostheses feature an ever-increasing number of degrees of freedom (DoF). This added functionality and dexterity is of limited use unless new ways of prostheses control will be developed. Currently control with two surface electrodes, allowing sequential control of each DoF separately, is still most often found. Efficient use of dexterous hand-prostheses though requires an intuitive and simultaneous control scheme. This generally will also require an increasing number of control signals. These can be acquired by application of advanced signal processing techniques on the electromyogram (EMG) measured at the skin surface, or by means of implantable EMG measurement systems. The latter aim at providing more independent and intuitively generated control signals by acquisition of the EMG directly on single muscles. The following article will first give a short overview of some of these systems and will then present one such system – the MyoPlant system – in more detail. In this part, we will present a system overview as well as first EMG data collected in sheep.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reiter, R.: Eine neue Electrokunsthand. Grenzgebiete der Medizin 4(133) (1948)

    Google Scholar 

  2. Türker, K.S.: Electromyography: some methodological problems and issues. Phys. Ther. 73(10), 698–710 (1993)

    Google Scholar 

  3. Oskoei, M.A., Hu, H.: Myoelectric control systems—A survey. Biomed. Signal Proces. 2(4), 275–294 (2007)

    Article  Google Scholar 

  4. Hargrove, L.J., Englehart, K., Hudgins, B.: A Comparison of Surface and Intramuscular Myoelectric Signal Classification. IEEE Trans. Biomed. Eng. 54(5), 847–853 (2007)

    Article  Google Scholar 

  5. Scheme, E., Englehart, K.: Electromyogram pattern recognition for control of powered upper-limb prostheses: State of the art and challenges for clinical use. JRRD 48(6), 643–660 (2011)

    Article  Google Scholar 

  6. Scheme, E., et al.: Examining the adverse effects of limb position on pattern recognition based myoelectric control. Conf. Proc. IEEE Eng. Med. Biol. Soc., 6337–6340 (2010)

    Google Scholar 

  7. Hargrove, L., Englehart, K., Hudgins, B.: A training strategy to reduce classification degradation due to electrode displacements in pattern recognition based myoelectric control. Biomed. Signal Proces. 2(4), 275–294 (2008)

    Google Scholar 

  8. Navarro, X., et al.: A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J. Peripher. Nerv. Syst. 10(3), 229–258 (2005)

    Article  Google Scholar 

  9. Ortiz-Catalan, M., Brånemark, R., Håkansson, B., Delbeke, J.: On the viability of implantable electrodes for the natural control of artificial limbs: review and discussion. Biomed. Eng. Online 11(33) (2012)

    Google Scholar 

  10. Knutson, J.S., Naples, G.G., Peckham, P.H., Keith, M.W.: Electrode fracture rates and occurrences of infection and granuloma associated with percutaneous intramuscular electrodes in upper-limb functional electrical stimulation applications. J. Rehabil. Res. Dev. 39(6), 671–683 (2002)

    Google Scholar 

  11. Hirsch, C., Kaiser, E., Petersén, I.: Telemetry of myo-potentials. A preliminary report on telemetring of myo-potentials from implanted microcircuits for servo control of powered prostheses. Acta Orthop. Scand. 37(2), 156–165 (1966)

    Article  Google Scholar 

  12. Herberts, P., Kadefors, R., Kaiser, E., Petersén, I.: Implantation of micro-circuits for myo-electric control of prostheses. J. Bone Joint Surg. Br. 50(4), 780–791 (1968)

    Google Scholar 

  13. Weir, R.F., Troyk, P.R., DeMichele, G., Kuiken, T.: Implantable myoelectric sensors (IMES) for upper-extremity prosthesis control - preliminary work. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 1562–1565 (2003)

    Google Scholar 

  14. Weir, R.F., Troyk, P.R., Demichele, G.A., Kerns, D.A.: Technical Details of the Implantable Myoelectric Sensor (IMES) System for Multifunction Prosthesis Control. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 7337–7340 (2005)

    Google Scholar 

  15. Weir, R.F., et al.: Implantable myoelectric sensors (IMESs) for intramuscular electromyogram recording. IEEE Trans. Biomed. Eng. 56(1), 159–171 (2009)

    Article  Google Scholar 

  16. McDonnall, D., et al.: In Vivo Validation of an Implantable Multichannel Wireless Myoelectric System for Prosthesis Control. In: IFESS Conf. (2012)

    Google Scholar 

  17. McDonnall, D., et al.: Implantable multichannel wireless electromyography for prosthesis control. In: Conf. Proc. IEEE Eng. Med. Biol. Soc., pp. 1350–1353 (2012)

    Google Scholar 

  18. Kirsch, R.F.: Department of Orthopaedics, Case Western Reserve University School of Medicine, Cleveland, OH. Private Communication (January 2014)

    Google Scholar 

  19. Coppey, G., Andreu, D., Guiraud, D.: Distributed Measurement Unit for Closed-Loop Functional Electrical Stimulation: Prototype for Muscular Activity Detection. In: IFESS Conf. (2012)

    Google Scholar 

  20. Hoffmann, H.-P., Dietl, H.: Handprothesen – Nach dem Vorbild der Natur. Deutsches Ärzteblatt 107(45), 11–14 (2010)

    Google Scholar 

  21. Lewis, S., et al.: Implantable Silicone Electrode for Measurement of Muscle Activity: Results of First in Vivo Evaluation. In: Proc. BMT, Graz (2013)

    Google Scholar 

  22. Abu-Saleh, L., et al.: Ein implantierbares System zur Aufnahme von EMG-Signalen zur Ansteuerung einer Prothese. In: Proc. BMT, Rostock, Germany, October 6-8 (2010)

    Google Scholar 

  23. Cardona, A.J., et al.: Inductive energy transmission system and real-time data link for intelligent implants. In: Proc. BMT, Freiburg, Germany (September 2011)

    Google Scholar 

  24. Lewis, S., et al.: Fully Implantable Multi-Channel Measurement System for Acquisition of Muscle Activity. IEEE Trans. Instrum. Meas. 62(7), 1972–1981 (2013)

    Article  Google Scholar 

  25. Baker, J.J., et al.: Continuous detection and decoding of dexterous finger flexions with implantable myoelectric sensors. IEEE Trans. Neural Syst. Rehabil. Eng. 18(4), 424–432 (2010)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sören Lewis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Lewis, S., Russold, M., Hahn, M., Aszmann, O.C. (2014). Fully Implantable Multichannel EMG Measurement System: First Results. In: Jensen, W., Andersen, O., Akay, M. (eds) Replace, Repair, Restore, Relieve – Bridging Clinical and Engineering Solutions in Neurorehabilitation. Biosystems & Biorobotics, vol 7. Springer, Cham. https://doi.org/10.1007/978-3-319-08072-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08072-7_12

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08071-0

  • Online ISBN: 978-3-319-08072-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics