Abstract
Biological systems employ compartmentalisation in order to orchestrate a multitude of biochemical processes by simultaneously enabling “data hiding” and modularisation. In this paper, we present recent research projects that embrace compartmentalisation as an organisational programmatic principle in synthetic biological and biomimetic systems. In these systems, artificial vesicles and synthetic minimal cells are envisioned as nanoscale reactors for programmable biochemical synthesis and as chassis for molecular information processing. We present P systems, brane calculi, and the recently developed chemtainer calculus as formal frameworks providing data hiding and modularisation and thus enabling the representation of highly complicated hierarchically organised compartmentalised reaction systems. We demonstrate how compartmentalisation can greatly reduce the complexity required to implement computational functionality, and how addressable compartments permit the scaling-up of programmable chemical synthesis.
Keywords
- Emulsion Droplet
- Dissipative Particle Dynamics
- NAND Gate
- Reaction Rule
- Rapid Model Prototype
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Rothman, J.E.: The golgi apparatus: two organelles in tandem. Science 213(4513), 1212–1219 (1981) PMID: 7268428
Rothman, J.E.: Mechanisms of intracellular protein transport. Nature 372(6501), 55–63 (1994)
Chaplin, J.C., Russell, N.A., Krasnogor, N.: Implementing conventional logic unconventionally: Photochromic molecular populations as registers and logic gates. Biosystems 109(1), 35–51 (2012)
Amos, M., Dittrich, P., McCaskill, J., Rasmussen, S.: Biological and chemical information technologies. In: Proceedings from the 2nd European Future Technologies Conference and Exhibition 2011 (FET 2011), pp. 56–60. Procedia Computer Science (2011)
Monnard, P.A.: Liposome-entrapped polymerases as models for microscale/nanoscale bioreactors. J. Membr. Biol. 191(2), 87–97 (2003)
Noireaux, V., Libchaber, A.: A vesicle bioreactor as a step toward an artificial cell assembly. Proc. Nat. Acad. Sci. USA 101(51), 17669–17674 (2004)
Roodbeen, R., van Hest, J.C.M.: Synthetic cells and organelles: compartmentalization strategies. BioEssays 31(12), 1299–1308 (2009)
Beales, P.A., Vanderlick, T.K.: Specific binding of different vesicle populations by the hybridization of membrane-anchored DNA. J. Phys. Chem. A 111(49), 12372–12380 (2007)
Hadorn, M., Hotz, P.E.: DNA-mediated self-assembly of artificial vesicles. PLoS One 5(3), e9886 (2010)
Hadorn, M., Bonzli, E., Fellermann, H., Eggenberger Hotz, P., Hanczyc, M.: Specific and reversible DNA-directed self-assembly of emulsion droplets. Proc. Nat. Acad. Sci. USA 109(47) (2012)
Bonifacino, J.S., Glick, B.S.: The mechanisms of vesicle budding and fusion. Cell 116(2), 153–166 (2004)
Richard, A., Marchi-Artzner, V., Lalloz, M.N., Brienne, M.J., Artzner, F., Gulik-Krzywicki, T., Guedeau-Boudeville, M.A., Lehn, J.M.: Fusogenic supramolecular vesicle systems induced by metal ion binding to amphiphilic ligands. Proc. Nat. Acad. Sci. USA 101(43), 15279–15284 (2004) PMID: 15492229
Caschera, F., Sunami, T., Matsuura, T., Suzuki, H., Hanczyc, M.: Programmed vesicle fusion triggers gene expression. Langmuir 27(21), 13082–13090 (2011)
Terasawa, H., Nishimura, K., Suzuki, H., Matsuura, T., Yomo, T.: Coupling of the fusion and budding of giant phospholipid vesicles containing macromolecules. Proc. Nat. Acad. Sci. USA 109(16), 5942–5947 (2012) PMID: 22474340
Waage, P., Gulberg, C.M.: Studies concerning affinity. Journal of Chemical Education 63(12), 1044 (1986)
Paun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)
Cardelli, L.: Brane calculi – interactions of biological membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)
Bacci, G., Miculan, M.: Measurable stochastics for brane calculus. Theor. Comp. 431, 117–136 (2012)
Fellermann, H., Cardelli, L.: Programmable chemistry in DNA addressable bioreactors. R. Soc. Interface (2014)
Cardelli, L.: Strand algebras for DNA computing. Nat. Comput. 10, 407–428 (2011)
Weyland, M.S., Fellermann, H., Hadorn, M., Sorek, D., Lancet, D., Rasmussen, S., Fuchslin, R.M.: The MATCHIT automaton: Exploiting compartmentalization for the synthesis of branched polymers. Computational and Mathematical Methods in Medicine, 467428 (December 2013)
Varki, A.: Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3(2), 97–130 (1993) PMID: 8490246
Koeller, K.M., Wong, C.: Complex carbohydrate synthesis tools for glycobiologists: enzyme-based approach and programmable one-pot strategies. Glycobiology 10(11), 1157–1169 (2000)
Smaldon, J., Romero-Campero, F.J., Trillo, F.F., Gheorghe, M., Alexander, C., Krasnogor, N.: A computational study of liposome logic: towards cellular computing from the bottom up. Systems and Synthetic Biology 4(3), 157–179 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Fellermann, H., Krasnogor, N. (2014). Chemical Production and Molecular Computing in Addressable Reaction Compartments. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds) Language, Life, Limits. CiE 2014. Lecture Notes in Computer Science, vol 8493. Springer, Cham. https://doi.org/10.1007/978-3-319-08019-2_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-08019-2_18
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08018-5
Online ISBN: 978-3-319-08019-2
eBook Packages: Computer ScienceComputer Science (R0)