Skip to main content

Chemical Production and Molecular Computing in Addressable Reaction Compartments

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNTCS,volume 8493)

Abstract

Biological systems employ compartmentalisation in order to orchestrate a multitude of biochemical processes by simultaneously enabling “data hiding” and modularisation. In this paper, we present recent research projects that embrace compartmentalisation as an organisational programmatic principle in synthetic biological and biomimetic systems. In these systems, artificial vesicles and synthetic minimal cells are envisioned as nanoscale reactors for programmable biochemical synthesis and as chassis for molecular information processing. We present P systems, brane calculi, and the recently developed chemtainer calculus as formal frameworks providing data hiding and modularisation and thus enabling the representation of highly complicated hierarchically organised compartmentalised reaction systems. We demonstrate how compartmentalisation can greatly reduce the complexity required to implement computational functionality, and how addressable compartments permit the scaling-up of programmable chemical synthesis.

Keywords

  • Emulsion Droplet
  • Dissipative Particle Dynamics
  • NAND Gate
  • Reaction Rule
  • Rapid Model Prototype

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rothman, J.E.: The golgi apparatus: two organelles in tandem. Science 213(4513), 1212–1219 (1981) PMID: 7268428

    Google Scholar 

  2. Rothman, J.E.: Mechanisms of intracellular protein transport. Nature 372(6501), 55–63 (1994)

    CrossRef  Google Scholar 

  3. Chaplin, J.C., Russell, N.A., Krasnogor, N.: Implementing conventional logic unconventionally: Photochromic molecular populations as registers and logic gates. Biosystems 109(1), 35–51 (2012)

    CrossRef  Google Scholar 

  4. Amos, M., Dittrich, P., McCaskill, J., Rasmussen, S.: Biological and chemical information technologies. In: Proceedings from the 2nd European Future Technologies Conference and Exhibition 2011 (FET 2011), pp. 56–60. Procedia Computer Science (2011)

    Google Scholar 

  5. Monnard, P.A.: Liposome-entrapped polymerases as models for microscale/nanoscale bioreactors. J. Membr. Biol. 191(2), 87–97 (2003)

    CrossRef  Google Scholar 

  6. Noireaux, V., Libchaber, A.: A vesicle bioreactor as a step toward an artificial cell assembly. Proc. Nat. Acad. Sci. USA 101(51), 17669–17674 (2004)

    CrossRef  Google Scholar 

  7. Roodbeen, R., van Hest, J.C.M.: Synthetic cells and organelles: compartmentalization strategies. BioEssays 31(12), 1299–1308 (2009)

    CrossRef  Google Scholar 

  8. Beales, P.A., Vanderlick, T.K.: Specific binding of different vesicle populations by the hybridization of membrane-anchored DNA. J. Phys. Chem. A 111(49), 12372–12380 (2007)

    CrossRef  Google Scholar 

  9. Hadorn, M., Hotz, P.E.: DNA-mediated self-assembly of artificial vesicles. PLoS One 5(3), e9886 (2010)

    Google Scholar 

  10. Hadorn, M., Bonzli, E., Fellermann, H., Eggenberger Hotz, P., Hanczyc, M.: Specific and reversible DNA-directed self-assembly of emulsion droplets. Proc. Nat. Acad. Sci. USA 109(47) (2012)

    Google Scholar 

  11. Bonifacino, J.S., Glick, B.S.: The mechanisms of vesicle budding and fusion. Cell 116(2), 153–166 (2004)

    CrossRef  Google Scholar 

  12. Richard, A., Marchi-Artzner, V., Lalloz, M.N., Brienne, M.J., Artzner, F., Gulik-Krzywicki, T., Guedeau-Boudeville, M.A., Lehn, J.M.: Fusogenic supramolecular vesicle systems induced by metal ion binding to amphiphilic ligands. Proc. Nat. Acad. Sci. USA 101(43), 15279–15284 (2004) PMID: 15492229

    Google Scholar 

  13. Caschera, F., Sunami, T., Matsuura, T., Suzuki, H., Hanczyc, M.: Programmed vesicle fusion triggers gene expression. Langmuir 27(21), 13082–13090 (2011)

    CrossRef  Google Scholar 

  14. Terasawa, H., Nishimura, K., Suzuki, H., Matsuura, T., Yomo, T.: Coupling of the fusion and budding of giant phospholipid vesicles containing macromolecules. Proc. Nat. Acad. Sci. USA 109(16), 5942–5947 (2012) PMID: 22474340

    Google Scholar 

  15. Waage, P., Gulberg, C.M.: Studies concerning affinity. Journal of Chemical Education 63(12), 1044 (1986)

    CrossRef  Google Scholar 

  16. Paun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)

    CrossRef  MATH  MathSciNet  Google Scholar 

  17. Cardelli, L.: Brane calculi – interactions of biological membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–278. Springer, Heidelberg (2005)

    CrossRef  Google Scholar 

  18. Bacci, G., Miculan, M.: Measurable stochastics for brane calculus. Theor. Comp. 431, 117–136 (2012)

    CrossRef  MATH  MathSciNet  Google Scholar 

  19. Fellermann, H., Cardelli, L.: Programmable chemistry in DNA addressable bioreactors. R. Soc. Interface (2014)

    Google Scholar 

  20. Cardelli, L.: Strand algebras for DNA computing. Nat. Comput. 10, 407–428 (2011)

    CrossRef  MATH  MathSciNet  Google Scholar 

  21. Weyland, M.S., Fellermann, H., Hadorn, M., Sorek, D., Lancet, D., Rasmussen, S., Fuchslin, R.M.: The MATCHIT automaton: Exploiting compartmentalization for the synthesis of branched polymers. Computational and Mathematical Methods in Medicine, 467428 (December 2013)

    Google Scholar 

  22. Varki, A.: Biological roles of oligosaccharides: all of the theories are correct. Glycobiology 3(2), 97–130 (1993) PMID: 8490246

    Google Scholar 

  23. Koeller, K.M., Wong, C.: Complex carbohydrate synthesis tools for glycobiologists: enzyme-based approach and programmable one-pot strategies. Glycobiology 10(11), 1157–1169 (2000)

    CrossRef  Google Scholar 

  24. Smaldon, J., Romero-Campero, F.J., Trillo, F.F., Gheorghe, M., Alexander, C., Krasnogor, N.: A computational study of liposome logic: towards cellular computing from the bottom up. Systems and Synthetic Biology 4(3), 157–179 (2010)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Fellermann, H., Krasnogor, N. (2014). Chemical Production and Molecular Computing in Addressable Reaction Compartments. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds) Language, Life, Limits. CiE 2014. Lecture Notes in Computer Science, vol 8493. Springer, Cham. https://doi.org/10.1007/978-3-319-08019-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08019-2_18

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08018-5

  • Online ISBN: 978-3-319-08019-2

  • eBook Packages: Computer ScienceComputer Science (R0)