Abstract
We show that it is decidable whether a given a regular tree language belongs to the class \({\bf \Delta^0_2}\) of the Borel hierarchy, or equivalently whether the Wadge degree of a regular tree language is countable.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Blumensath, A.: An algebraic proof of Rabin’s theorem. Theoretical Computer Science 478, 1–21 (2013)
Bojańczyk, M., Place, T.: Regular Languages of Infinite Trees That Are Boolean Combinations of Open Sets. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 104–115. Springer, Heidelberg (2012)
Bojańczyk, M.: Algebra for trees. In: Handbook of Automata Theory, European Mathematical Society Publishing House (to appear)
Bojańczyk, M., Idziaszek, T.: Algebra for infinite forests with an application to the temporal logic EF. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 131–145. Springer, Heidelberg (2009)
Colcombet, T., Kuperberg, D., Löding, C., Vanden Boom, M.: Deciding the weak definability of Büchi definable tree languages. In: CSL 2013, pp. 215–230 (2013)
Duparc, J.: Wadge Hierarchy and Veblen Hierarchy Part 1: Borel Sets of Finite Rank. Journal of Symbolic Logic 66(1), 56–86 (2001)
Duparc, J., Murlak, F.: On the Topological Complexity of Weakly Recognizable Tree Languages. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 261–273. Springer, Heidelberg (2007)
Facchini, A., Michalewski, H.: Deciding the Borel complexity of regular tree languages (2014), http://arxiv.org/abs/1403.3502
Facchini, A., Murlak, F., Skrzypczak, M.: Rabin-Mostowski index problem: a step beyond deterministic automata. In: LICS 2013 (2013)
Kechris, A.: Classical Descriptive Set Theory. Springer (1995)
Martin, D.A.: Borel determinacy. The Annals of Mathematics 102, 363–371 (1975)
Murlak, F.: On deciding topological classes of deterministic tree languages. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 428–441. Springer, Heidelberg (2005)
Murlak, F.: The Wadge Hierarchy of Deterministic Tree Languages. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 408–419. Springer, Heidelberg (2006)
Niwiński, D., Walukiewicz, I.: A gap property of deterministic tree languages. Theoretical Comput. Sci. 303, 215–231 (2003)
Perrin, D., Pin, J.E.: Infinite Words: Automata, Semigroups, Logic and Games. Academic Press (2004)
Rabin, M.O.: Weakly definable relations and special automata. In: Bar-Hillel, Y. (ed.) Foundations of Set Theory, pp. 1–23 (1970)
Wadge, W.W.: Reducibility and Determinateness on the Baire Space, Ph.D. Thesis, Berkeley (1984)
Wagner, K.: On ω-regular sets. Inform and Control 43, 123–177 (1979)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2014 Springer International Publishing Switzerland
About this paper
Cite this paper
Facchini, A., Michalewski, H. (2014). Deciding the Borel Complexity of Regular Tree Languages. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds) Language, Life, Limits. CiE 2014. Lecture Notes in Computer Science, vol 8493. Springer, Cham. https://doi.org/10.1007/978-3-319-08019-2_17
Download citation
DOI: https://doi.org/10.1007/978-3-319-08019-2_17
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-08018-5
Online ISBN: 978-3-319-08019-2
eBook Packages: Computer ScienceComputer Science (R0)