Skip to main content

Deciding the Borel Complexity of Regular Tree Languages

  • Conference paper
Language, Life, Limits (CiE 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8493))

Included in the following conference series:

Abstract

We show that it is decidable whether a given a regular tree language belongs to the class \({\bf \Delta^0_2}\) of the Borel hierarchy, or equivalently whether the Wadge degree of a regular tree language is countable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Blumensath, A.: An algebraic proof of Rabin’s theorem. Theoretical Computer Science 478, 1–21 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bojańczyk, M., Place, T.: Regular Languages of Infinite Trees That Are Boolean Combinations of Open Sets. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012, Part II. LNCS, vol. 7392, pp. 104–115. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  3. Bojańczyk, M.: Algebra for trees. In: Handbook of Automata Theory, European Mathematical Society Publishing House (to appear)

    Google Scholar 

  4. Bojańczyk, M., Idziaszek, T.: Algebra for infinite forests with an application to the temporal logic EF. In: Bravetti, M., Zavattaro, G. (eds.) CONCUR 2009. LNCS, vol. 5710, pp. 131–145. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  5. Colcombet, T., Kuperberg, D., Löding, C., Vanden Boom, M.: Deciding the weak definability of Büchi definable tree languages. In: CSL 2013, pp. 215–230 (2013)

    Google Scholar 

  6. Duparc, J.: Wadge Hierarchy and Veblen Hierarchy Part 1: Borel Sets of Finite Rank. Journal of Symbolic Logic 66(1), 56–86 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Duparc, J., Murlak, F.: On the Topological Complexity of Weakly Recognizable Tree Languages. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, pp. 261–273. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  8. Facchini, A., Michalewski, H.: Deciding the Borel complexity of regular tree languages (2014), http://arxiv.org/abs/1403.3502

  9. Facchini, A., Murlak, F., Skrzypczak, M.: Rabin-Mostowski index problem: a step beyond deterministic automata. In: LICS 2013 (2013)

    Google Scholar 

  10. Kechris, A.: Classical Descriptive Set Theory. Springer (1995)

    Google Scholar 

  11. Martin, D.A.: Borel determinacy. The Annals of Mathematics 102, 363–371 (1975)

    Article  MATH  Google Scholar 

  12. Murlak, F.: On deciding topological classes of deterministic tree languages. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 428–441. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  13. Murlak, F.: The Wadge Hierarchy of Deterministic Tree Languages. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp. 408–419. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  14. Niwiński, D., Walukiewicz, I.: A gap property of deterministic tree languages. Theoretical Comput. Sci. 303, 215–231 (2003)

    Article  MATH  Google Scholar 

  15. Perrin, D., Pin, J.E.: Infinite Words: Automata, Semigroups, Logic and Games. Academic Press (2004)

    Google Scholar 

  16. Rabin, M.O.: Weakly definable relations and special automata. In: Bar-Hillel, Y. (ed.) Foundations of Set Theory, pp. 1–23 (1970)

    Google Scholar 

  17. Wadge, W.W.: Reducibility and Determinateness on the Baire Space, Ph.D. Thesis, Berkeley (1984)

    Google Scholar 

  18. Wagner, K.: On ω-regular sets. Inform and Control 43, 123–177 (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Facchini, A., Michalewski, H. (2014). Deciding the Borel Complexity of Regular Tree Languages. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds) Language, Life, Limits. CiE 2014. Lecture Notes in Computer Science, vol 8493. Springer, Cham. https://doi.org/10.1007/978-3-319-08019-2_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08019-2_17

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08018-5

  • Online ISBN: 978-3-319-08019-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics