Advertisement

Modeling Life as Cognitive Info-computation

  • Gordana Dodig-Crnkovic
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8493)

Abstract

This article presents a naturalist approach to cognition understood as a network of info-computational, autopoietic processes in living systems. It provides a conceptual framework for the unified view of cognition as evolved from the simplest to the most complex organisms, based on new empirical and theoretical results. It addresses three fundamental questions: what cognition is, how cognition works and what cognition does at different levels of complexity of living organisms. By explicating the info-computational character of cognition, its evolution, agent-dependency and generative mechanisms we can better understand its life-sustaining and life-propagating role. The info-computational approach contributes to rethinking cognition as a process of natural computation in living beings that can be applied for cognitive computation in artificial systems.

Keywords

Cognitive Agent Modeling Life Informational Structure Natural Computation Computing Nature 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lyon, P.: The biogenic approach to cognition. Cognitive Processing 7, 11–29 (2005)CrossRefGoogle Scholar
  2. 2.
    Neisser, U.: Cognitive psychology. Appleton-Century Crofts (1967)Google Scholar
  3. 3.
    Rozenberg, G., Kari, L.: The many facets of natural computing. Communications of the ACM 51, 72–83 (2008)Google Scholar
  4. 4.
    Modha, D.S., Ananthanarayanan, R., Esser, S.K., Ndirango, A., Sherbondy, A.J., Singh, R.: Cognitive computing. Communications of the ACM 54(8), 62–71 (2011)CrossRefGoogle Scholar
  5. 5.
    Maturana, H., Varela, F.: Autopoiesis and cognition: the realization of the living. D. Reidel Pub. Co. (1980)Google Scholar
  6. 6.
    Maturana, H.: Biology of Cognition. Defense Technical Information Center (1970)Google Scholar
  7. 7.
    Dodig-Crnkovic, G., Giovagnoli, R.: Computing Nature. Springer (2013)Google Scholar
  8. 8.
    Dodig-Crnkovic, G., Burgin, M.: Information and Computation. World Scientific Pub. Co. Inc. (2011)Google Scholar
  9. 9.
    van Duijn, M., Keijzer, F., Franken, D.: Principles of minimal cognition: Casting cognition as sensorimotor coordination. Adaptive Behavior 14, 157–170 (2006)CrossRefGoogle Scholar
  10. 10.
    Ben-Jacob, E., Shapira, Y., Tauber, A.: Seeking the foundations of cognition in bacteria. Physica A 359, 495–524 (2006)CrossRefGoogle Scholar
  11. 11.
    Ben-Jacob, E.: Social behavior of bacteria: from physics to complex organization. The European Physical Journal B 65(3), 315–322 (2008)CrossRefGoogle Scholar
  12. 12.
    Ben-Jacob, E.: Learning from bacteria about natural information processing. Annals of the New York Academy of Sciences 1178, 78–90 (2009)CrossRefGoogle Scholar
  13. 13.
    Ng, W.L., Bassler, B.L.: Bacterial quorum-sensing network architectures. Annual Review of Genetics 43, 197–222 (2009)CrossRefGoogle Scholar
  14. 14.
    Waters, C.M., Bassler, B.L.: Quorum sensing: Cell-to-cell communication in bacteria. Annual Review of Cell and Developmental Biology 21, 319–346 (2005)CrossRefGoogle Scholar
  15. 15.
    Pombo, O., Torres, J., Symons, J. (eds.): Special Sciences and the Unity of Science. Springer (2012)Google Scholar
  16. 16.
    Rosen, R.: Anticipatory Systems. Pergamon Press (1985)Google Scholar
  17. 17.
    Popper, K.: All Life is Problem Solving. Routledge (1999)Google Scholar
  18. 18.
    Floridi, L.: Informational realism. In: Weckert, J., Al-Saggaf, Y. (eds.) Selected Papers from Conference on Computers and Philosophy, vol. 37, pp. 7–12. Australian Computer Society, Inc. (2003)Google Scholar
  19. 19.
    Sayre, K.M.: Cybernetics and the Philosophy of Mind. Routledge and Kegan Paul (1976)Google Scholar
  20. 20.
    Stonier, T.: Information and meaning: an evolutionary perspective. Springer (1997)Google Scholar
  21. 21.
    Zeilinger, A.: The message of the quantum. Nature 438, 743–743 (2005)CrossRefGoogle Scholar
  22. 22.
    Vedral, V.: Decoding reality: the universe as quantum information. Oxford University Press (2010)Google Scholar
  23. 23.
    Chaitin, G.: Epistemology as information theory: From leibniz to omega. In: Dodig Crnkovic, G. (ed.) Computation, Information, Cognition, The Nexus and The Liminal, pp. 2–17. Cambridge Scholars Pub. (2007)Google Scholar
  24. 24.
    Dodig-Crnkovic, G.: Dynamics of information as natural computation. Information 2(3), 460–477 (2011)CrossRefGoogle Scholar
  25. 25.
    Dodig-Crnkovic, G.: Investigations into Information Semantics and Ethics of Computing. Mälardalen University Press (2006)Google Scholar
  26. 26.
    Dodig-Crnkovic, G.: Information, computation, cognition. Agency-based hierarchies of levels. In: Müller, V.C. (ed.) Fundamental Issues of Artificial Intelligence (Synthese Library). Springer (forthcoming, 2014)Google Scholar
  27. 27.
    Bateson, G.: Steps to an Ecology of Mind: Collected Essays in Anthropology, Psychiatry, Evolution, and Epistemology. University of Chicago Press (1972)Google Scholar
  28. 28.
    McGonigle, D., Mastrian, K.: Introduction to information, information science, and information systems. In: Nursing Informatics and the Foundation of Knowledge. Jones & Bartlett (2012)Google Scholar
  29. 29.
    Hewitt, C.: What is Commitment? Physical, Organizational, and Social. In: Noriega, P., Vázquez-Salceda, J., Boella, G., Boissier, O., Dignum, V., Fornara, N., Matson, E. (eds.) COIN 2006. LNCS (LNAI), vol. 4386, pp. 293–307. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  30. 30.
    Kauffman, S.: At Home in the Universe: The Search for Laws of Self-Organization and Complexity. Oxford University Press (1995)Google Scholar
  31. 31.
    Kauffman, S.: Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press (1993)Google Scholar
  32. 32.
    Deacon, T.: Incomplete Nature. How Mind Emerged from Matter. W. W. Norton and Company (2011)Google Scholar
  33. 33.
    Dodig-Crnkovic, G., Müller, V.: A dialogue concerning two world systems: Info-computational vs. mechanistic. In: Dodig Crnkovic, G., Burgin, M. (eds.) Information and Computation, pp. 149–184. World Scientific (2011)Google Scholar
  34. 34.
    Cooper, S.B.: Turing’s Titanic Machine? Communications of the ACM 55(3), 74–83 (2012)CrossRefGoogle Scholar
  35. 35.
    Dodig-Crnkovic, G.: Significance of Models of Computation from Turing Model to Natural Computation. Minds and Machines 21(2), 301–322 (2011)CrossRefGoogle Scholar
  36. 36.
    Hewitt, C.: What is computation? Actor model versus Turing’s model. In: Zenil, H. (ed.) A Computable Universe, Understanding Computation and Exploring Nature As Computation. World Scientific Publishing Company/Imperial College Press (2012)Google Scholar
  37. 37.
    Abramsky, S.: Information, processes and games. In: Benthem van, J., Adriaans, P. (eds.) Philosophy of Information, pp. 483–549. North-Holland (2008)Google Scholar
  38. 38.
    Goertzel, B.: Chaotic Logic. Language, Thought, and Reality from the Perspective of Complex Systems Science. Plenum Press (1994)Google Scholar
  39. 39.
    Kampis, G.: Self-Modifying Systems in Biology and Cognitive Science: A New Framework for Dynamics, Information, and Complexity. Pergamon Press (1991)Google Scholar
  40. 40.
    Rozenberg, G., Bäck, T., Kok, J. (eds.): Handbook of Natural Computing. Springer (2012)Google Scholar
  41. 41.
    MacLennan, B.: Natural Computation and Non-Turing Models of Computation. Theoretical Computer Science 317(1), 115–145 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  42. 42.
    Nunes de Castro, L.: Fundamentals of natural computing: An overview. Physics of Life Reviews 4, 1–36 (2007)CrossRefGoogle Scholar
  43. 43.
    Cardelli, L.: Artificial biochemistry. In: Condon, A., Harel, D., Kok, J., Salomaa, A., Winfree, E. (eds.) Algorithmic Bioprocesses, pp. 429–462. Springer (2009)Google Scholar
  44. 44.
    Burgin, M.: Super-Recursive Algorithms. Springer-Verlag New York Inc. (2005)Google Scholar
  45. 45.
    Wegner, P.: Interactive foundations of computing. Theoretical Computer Science 192(2), 315–351 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  46. 46.
    Valiant, L.: Probably Approximately Correct: Nature’s Algorithms for Learning and Prospering in a Complex World. Basic Books (2013)Google Scholar
  47. 47.
    Chaitin, G.: Life as evolving software. In: Zenil, H. (ed.) A Computable Universe, Understanding Computation and Exploring Nature As Computation. World Scientific (2012)Google Scholar
  48. 48.
    Dodig-Crnkovic, G.: The info-computational nature of morphological computing. In: Müller, V.C. (ed.) Theory and Philosophy of Artificial Intelligence, pp. 59–68. Springer (2012)Google Scholar
  49. 49.
    Landauer, R.: Information is physical. Physics Today 44, 23–29 (1991)CrossRefGoogle Scholar
  50. 50.
    Harms, W.F.: Naturalizing epistemology: Prospectus 2006. Biological Theory 1, 23–24 (2006)CrossRefGoogle Scholar
  51. 51.
    Okasha, S.: Review of William F. Harms, Information and Meaning in Evolutionary Processes. Notre Dame Philosophical Reviews 12 (2005)Google Scholar
  52. 52.
    Godfrey-Smith, P.: Environmental complexity and the evolution of cognition. In: Sternberg, R., Kaufman, J. (eds.) The Evolution of Intelligence, pp. 233–249. Lawrence Elrbaum Associates (2001)Google Scholar
  53. 53.
    Jablonka, E., Lamb, M.: Evolution in Four Dimensions: Genetic, Epigenetic, Behavioral, and Symbolic Variation in the History of Life. MIT Press (2005)Google Scholar
  54. 54.
    Shapiro, J.A.: Evolution: A View from the 21st Century. FT Press Science (2011)Google Scholar
  55. 55.
    Bechtel, W.: Representations and cognitive explanations: Assessing the dynamicist’s challenge in cognitive science. Cognitive Science 22(3), 295–318 (1998)CrossRefGoogle Scholar
  56. 56.
    Wolfram, S.: A New Kind of Science. Wolfram Media (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Gordana Dodig-Crnkovic
    • 1
  1. 1.School of Innovation, Design and EngineeringMälardalen UniversityVästeråsSweden

Personalised recommendations