Skip to main content

Isomorphisms of Non-Standard Fields and Ash’s Conjecture

  • Conference paper
Book cover Language, Life, Limits (CiE 2014)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8493))

Included in the following conference series:

Abstract

Cohesive sets play an important role in computability theory. Here we use cohesive sets to build nonstandard versions of the rationals. We use Koenigsmann’s work on Hilbert’s Tenth Problem to establish that these nonstandard fields are rigid. As a consequence we obtain results about automorphisms of the lattices of computably enumerable vector spaces arising in the context of Ash’s conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Davis, M., Matiyasevich, Y., Robinson, J.: Hilbert’s tenth problem: Diophantine equations: positive aspects of a negative solution, Mathematical developments arising from Hilbert problems. In: Proc. Sympos. Pure Math., vol. XXVIII, Northern Illinois Univ, De Kalb, Ill (1974); Amer. Math. Soc., Providence, RI, pp. 323–378 (1976)

    Google Scholar 

  2. Dimitrov, R.D.: Quasimaximality and principal filters isomorphism between \(\mathcal{E}^{\ast }\) and \(\mathcal{L}^{\ast }(V_{\infty })\). Arch. Math. Logic 43, 415–424 (2004)

    Google Scholar 

  3. Dimitrov, R.D.: A class of \(\Sigma _{3}^{0}\) modular lattices embeddable as principal filters in \(\mathcal{L}^{\ast }(V_{\infty }) \). Arch. Math. Logic 47(2), 111–132 (2008)

    Google Scholar 

  4. Dimitrov, R.D.: Cohesive powers of computable structures, Annuare De L’Universite De Sofia “St. Kliment Ohridski”. Fac. Math. and Inf., Tome 99, 193–201 (2009)

    Google Scholar 

  5. Dimitrov, R.D.: Extensions of certain partial automorphisms of \(\mathcal{L}^{\ast }(V_{\infty })\), Annuare De L’Universite De Sofia “St. Kliment Ohridski”. Fac. Math. and Inf., Tome 99, 183–191 (2009)

    Google Scholar 

  6. Feferman, S., Scott, D.S., Tennenbaum, S.: Models of arithmetic through function rings. Notices Amer. Math. Soc. 6, 173. Abstract #556-31 (1959)

    Google Scholar 

  7. Guichard, D.R.: Automorphisms of substructure lattices in recursive algebra. Ann. Pure Appl. Logic 25(1), 47–58 (1983)

    Google Scholar 

  8. Hirschfeld, J.: Models of arithmetic and recursive functions. Israel Journal of Mathematics 20(2), 111–126 (1975)

    Google Scholar 

  9. Hirschfeld, J., Wheeler, W.: Forcing, arithmetic, division rings. Lecture Notes in Mathematics, vol. 454. Springer, Berlin (1975)

    Google Scholar 

  10. Robinson, J.: Definability and decision problems in arithmetic. Journal of Symbolic Logic 14(2), 98–114 (1949)

    Google Scholar 

  11. Koenigsmann, J.: Defining ℤ in ℚ, forthcoming in the Annals of Mathematics, http://arxiv.org/abs/1011.3424

  12. Lerman, M.: Recursive functions modulo co-r-maximal sets. Transactions of the American Mathematical Society 148(2), 429–444 (1970)

    Google Scholar 

  13. McLaughlin, T.: Some extension and rearrangement theorems for Nerode semirings, Zeitschr. f. math. Logic und Grundlagen d. Math. 35, 197–209 (1989)

    Google Scholar 

  14. McLaughlin, T.: Sub-arithmetical ultrapowers: a survey. Annals of Pure and Applied Logic 49(2), 143–191 (1990)

    Google Scholar 

  15. McLaughlin, T.: Δ1 ultrapowers are totally rigid. Archive for Mathematical Logic 46, 379–384 (2007)

    Google Scholar 

  16. Metakides, G., Nerode, A.: Recursively enumerable vector spaces. Annals of Mathematical Logic 11, 147–171 (1977)

    Google Scholar 

  17. Robinson, R.: Arithmetical definitions in the ring of integers. Proceedings of the American Mathematical Society 2(2), 279–284 (1951)

    Google Scholar 

  18. Soare, R.I.: Recursively Enumerable Sets and Degrees. A Study of Computable Functions and Computably Generated Sets. Springer, Berlin (1987)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Dimitrov, R., Harizanov, V., Miller, R., Mourad, K.J. (2014). Isomorphisms of Non-Standard Fields and Ash’s Conjecture. In: Beckmann, A., Csuhaj-Varjú, E., Meer, K. (eds) Language, Life, Limits. CiE 2014. Lecture Notes in Computer Science, vol 8493. Springer, Cham. https://doi.org/10.1007/978-3-319-08019-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-08019-2_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-08018-5

  • Online ISBN: 978-3-319-08019-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics