Skip to main content

Advertisement

SpringerLink
  • Log in
Book cover

International Conference on Image and Signal Processing

ICISP 2014: Image and Signal Processing pp 425–432Cite as

  1. Home
  2. Image and Signal Processing
  3. Conference paper
Efficient Mechanism for Discontinuity Preserving in Optical Flow Methods

Efficient Mechanism for Discontinuity Preserving in Optical Flow Methods

  • Nelson Monzón19,
  • Javier Sánchez19 &
  • Agustín Salgado19 
  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 8509)

Abstract

We propose an efficient solution for preserving the motion boundaries in variational optical flow methods. This is a key problem of recent TV-L 1 methods, which typically create rounded effects at flow edges. A simple strategy to overcome this problem consists in inhibiting the smoothing at high image gradients. However, depending on the strength of the mitigating function, this solution may derive in an ill-posed formulation. Therefore, this type of approaches is prone to produce instabilities in the estimation of the flow fields. In this work, we modify this strategy to avoid this inconvenience. Then, we show that it provides very good results with the advantage that it yields an unconditionally stable scheme. In the experimental results, we present a detailed study and comparison between the different alternatives.

Keywords

  • Optical Flow
  • Motion Estimation
  • TV-L 1
  • Variational Method
  • Discontinuity-preserving

Download conference paper PDF

References

  1. Álvarez, L., Esclarín, J., Lefébure, M., Sánchez, J.: A PDE model for computing the optical flow. In: XVI Congreso de Ecuaciones Diferenciales y Aplicaciones, C.E.D.Y.A. XVI, Las Palmas de Gran Canaria, Spain, pp. 1349–1356 (1999)

    Google Scholar 

  2. Ayvaci, A., Raptis, M., Soatto, S.: Sparse occlusion detection with optical flow. International Journal of Computer Vision 97(3), 322–338 (2012)

    CrossRef  MATH  MathSciNet  Google Scholar 

  3. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. In: International Conference on Computer Vision, pp. 1–8 (2007)

    Google Scholar 

  4. Black, M.J., Anandan, P.: The robust estimation of multiple motions: Parametric and piecewise-smooth flow fields. Computer Vision and Image Understanding 63(1), 75–104 (1996)

    CrossRef  Google Scholar 

  5. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    CrossRef  Google Scholar 

  6. Cohen, I.: Nonlinear Variational Method for Optical Flow Computation. In: Proceedings of the 8th Scandinavian Conference on Image Analysis, Tromso, Norway, pp. 523–530. IAPR (1993)

    Google Scholar 

  7. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    CrossRef  Google Scholar 

  8. Meinhardt-Llopis, E., Snchez, J., Kondermann, D.: Horn-Schunck Optical Flow with a Multi-Scale Strategy. Image Processing on Line, 151–172 (2013), http://dx.doi.org/10.5201/ipol.2013.20

  9. Monzón López, N., Sánchez, J., Salgado de la Nuez, A.: Optic flow: Improving discontinuity preserving. In: Moreno-Díaz, R., Pichler, F., Quesada-Arencibia, A. (eds.) EUROCAST 2013, Part II. LNCS, vol. 8112, pp. 117–124. Springer, Heidelberg (2013)

    Google Scholar 

  10. Nagel, H.H., Enkelmann, W.: An investigation of smoothness constraints for the estimation of displacement vector fields from image sequences. IEEE Transanctions on Pattern Analysis and Machine Intelligence 8, 565–593 (1986)

    CrossRef  Google Scholar 

  11. Sánchez, J., Meinhardt-Llopis, E., Facciolo, G.: TV-L1 Optical Flow Estimation. Image Processing on Line, 137–150 (2013), http://dx.doi.org/10.5201/ipol.2013.26

  12. Sánchez, J., Monzón, N., Salgado, A.: Robust Optical Flow Estimation. Image Processing on Line, 242–260 (2013), http://dx.doi.org/10.5201/ipol.2013.21

  13. Wedel, A., Cremers, D., Pock, T., Bischof, H.: Structure- and motion-adaptive regularization for high accuracy optic flow. In: Proceedings of IEEE International Conference on Computer Vision, pp. 1663–1668 (September 2009)

    Google Scholar 

  14. Xu, L., Jia, J., Matsushita, Y.: Motion Detail Preserving Optical Flow Estimation. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1293–1300 (June 2010)

    Google Scholar 

  15. Zach, C., Pock, T., Bischof, H.: A Duality Based Approach for Realtime TV-L1 Optical Flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Department of Computer Science, University of Las Palmas de Gran Canaria, 35017, Las Palmas de Gran Canaria, Spain

    Nelson Monzón, Javier Sánchez & Agustín Salgado

Authors
  1. Nelson Monzón
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Javier Sánchez
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Agustín Salgado
    View author publications

    You can also search for this author in PubMed Google Scholar

Editor information

Editors and Affiliations

  1. Université de Caen Basse-Normandie, GREYC UMR CNRS 6072, ENSICAEN,6, Boulevard Maréchal Juin, 14050, Caen, France

    Abderrahim Elmoataz

  2. Université de Caen Basse-Normandie, GREYC UMR CNRS 6072, ENSICAEN, 6, Boulevard Maréchal Juin, 14050, Caen, France

    Olivier Lezoray

  3. Département de Mathématiques et d’ Informatique, Université du Québec à Trois-Rivières, C.P. 500 Trois-Rivières, G9A 5H7, Québec, QC, Canada

    Fathallah Nouboud

  4. Ecole Supérieure de Technologie, Université IbnZohr, BP. 33/S, Agadir, Morocco

    Driss Mammass

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Monzón, N., Sánchez, J., Salgado, A. (2014). Efficient Mechanism for Discontinuity Preserving in Optical Flow Methods. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds) Image and Signal Processing. ICISP 2014. Lecture Notes in Computer Science, vol 8509. Springer, Cham. https://doi.org/10.1007/978-3-319-07998-1_49

Download citation

  • .RIS
  • .ENW
  • .BIB
  • DOI: https://doi.org/10.1007/978-3-319-07998-1_49

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07997-4

  • Online ISBN: 978-3-319-07998-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Share this paper

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

  • The International Association for Pattern Recognition

    Published in cooperation with

    http://www.iapr.org/

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not logged in - 3.235.173.24

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.