Color Badger: A Novel Retinex-Based Local Tone Mapping Operator

  • Nikola Banić
  • Sven Lončarić
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8509)


In this paper a novel tone mapping operator (TMO) based on the Light Random Sprays Retinex (LRSR) algorithm is presented. TMOs convert high dynamic range (HDR) images to low dynamic range (LDR) images, which is often needed because of the display limitations of many devices. The proposed operator is a local operator, which retains the qualities of the LRSR and overcomes some of its weaknesses. The results of the execution speed and quality tests are presented and discussed and it is shown that on most of the test images the proposed operator is faster and in terms of quality as good as Durand’s TMO, one of the currently best TMOs. The C++ source code of the proposed operator is available at .


HDR LDR Light Random Sprays Retinex Retinex tone mapping 


  1. 1.
  2. 2.
    Banić, N., Lončarić, S.: Light Random Sprays Retinex: Exploiting the Noisy Illumination Estimation. IEEE Signal Processing Letters 20(12), 1240–1243 (2013)CrossRefGoogle Scholar
  3. 3.
    Braun, G.J., Fairchild, M.D.: Image lightness rescaling using sigmoidal contrast enhancement functions. Journal of Electronic Imaging 8(4), 380–393 (1999)CrossRefGoogle Scholar
  4. 4.
    Drago, F., Myszkowski, K., Annen, T., Chiba, N.: Adaptive logarithmic mapping for displaying high contrast scenes. In: Computer Graphics Forum, vol. 22, pp. 419–426. Wiley Online Library (2003)Google Scholar
  5. 5.
    Durand, F., Dorsey, J.: Fast bilateral filtering for the display of high-dynamic-range images. ACM Transactions on Graphics (TOG) 21(3), 257–266 (2002)CrossRefGoogle Scholar
  6. 6.
    Fattal, R., Lischinski, D., Werman, M.: Gradient domain high dynamic range compression. ACM Transactions on Graphics (TOG) 21, 249–256 (2002)CrossRefGoogle Scholar
  7. 7.
    Kuang, J., Yamaguchi, H., Johnson, G.M., Fairchild, M.D.: Testing HDR image rendering algorithms. In: Color and Imaging Conference, vol. 2004, pp. 315–320. Society for Imaging Science and Technology (2004)Google Scholar
  8. 8.
    Kuang, J., Yamaguchi, H., Liu, C., Johnson, G.M., Fairchild, M.D.: Evaluating HDR rendering algorithms. ACM Transactions on Applied Perception (TAP) 4(2), 9 (2007)CrossRefGoogle Scholar
  9. 9.
    Land, E.H.: The retinex. American Scientist 52(2), 247–264 (1964)Google Scholar
  10. 10.
    Larson, G.W., Rushmeier, H., Piatko, C.: A visibility matching tone reproduction operator for high dynamic range scenes. IEEE Transactions on Visualization and Computer Graphics 3(4), 291–306 (1997)CrossRefGoogle Scholar
  11. 11.
    Mantiuk, R., Daly, S., Kerofsky, L.: Display adaptive tone mapping. ACM Transactions on Graphics (TOG) 27, 68 (2008)CrossRefGoogle Scholar
  12. 12.
    Maxwell, S., Delaney, H.: Designing Experiments and Analyzing Data: A Model Comparison Perspective. No. s. 1 in Designing Experiments and Analyzing Data: A Model Comparison Perspective, Lawrence Erlbaum Associates (2004),
  13. 13.
    Meylan, L., Susstrunk, S.: High dynamic range image rendering with a retinex-based adaptive filter. IEEE Transactions on Image Processing 15(9), 2820–2830 (2006)CrossRefGoogle Scholar
  14. 14.
    NTUST Compute Graphics Group: HDR (2014),
  15. 15.
    Provenzi, E., Fierro, M., Rizzi, A., De Carli, L., Gadia, D., Marini, D.: Random spray retinex: A new retinex implementation to investigate the local properties of the model. IEEE Transactions on Image Processing 16(1), 162–171 (2007)CrossRefMathSciNetGoogle Scholar
  16. 16.
    Rahman, Z.U., Jobson, D.J., Woodell, G.A.: Retinex processing for automatic image enhancement. Journal of Electronic Imaging 13(1), 100–110 (2004)CrossRefGoogle Scholar
  17. 17.
    Reinhard, E., Devlin, K.: Dynamic range reduction inspired by photoreceptor physiology. IEEE Transactions on Visualization and Computer Graphics 11(1), 13–24 (2005)CrossRefGoogle Scholar
  18. 18.
    Reinhard, E., Heidrich, W., Debevec, P., Pattanaik, S., Ward, G., Myszkowski, K.: High dynamic range imaging: Acquisition, display, and image-based lighting. Morgan Kaufmann (2010)Google Scholar
  19. 19.
    Reinhard, E., Stark, M., Shirley, P., Ferwerda, J.: Photographic tone reproduction for digital images. ACM Transactions on Graphics (TOG) 21, 267–276 (2002)CrossRefGoogle Scholar
  20. 20.
    Yeganeh, H., Zhou, W.: Objective Quality Assessment of Tone Mapped Images. IEEE Transactions on Image Processing 22(2), 657–667 (2013)CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Nikola Banić
    • 1
  • Sven Lončarić
    • 1
  1. 1.Image Processing Group, Department of Electronic Systems and Information Processing, Faculty of Electrical Engineering and ComputingUniversity of ZagrebCroatia

Personalised recommendations