Building a Two-Way Hyperspectral Imaging System with Liquid Crystal Tunable Filters

  • Haebom Lee
  • Min H. Kim
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8509)

Abstract

Liquid crystal tunable filters can provide rapid and vibrationless section of any wavelength in transmitting spectrum so that they have been broadly used in building multispectral or hyperspectral imaging systems. However, the spectral range of the filters is limited to a certain range, such as visible or near-infrared spectrum. In general hyperspectral imaging applications, we are therefore forced to choose a certain range of target spectrum, either visible or near-infrared for instance. Owing to the nature of polarizing optical elements, imaging systems combined with multiple tunable filters have been rarely practiced. In this paper, we therefore present our experience of building a two-way hyperspectral imaging system with liquid crystal tunable filters. The system allows us to capture hyperspectral radiance continuously from visible to near-infrared spectrum (400—1100 nm at 7 nm intervals), which is 2.3 times wider and 34 times more channels compared to a common RGB camera. We report how we handle the multiple polarizing elements to extend the spectral range of the imager with the multiple tunable filters and propose an affine-based method to register the hyperspectral image channels of each wavelength.

Keywords

hyperspectral imager radiometric and geometric calibration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Mouroulis, P., Green, R.O., Chrien, T.G.: Design of pushbroom imaging spectrometers for optimum recovery of spectroscopic and spatial information. Applied Optics 39(13), 2210–2220 (2000)Google Scholar
  2. 2.
    Hoye, G., Fridman, A.: Mixel camera-—a new push-broom camera concept for high spatial resolution keystone-free hyperspectral imaging. Optics Express 21(9), 11057–11077 (2013)CrossRefGoogle Scholar
  3. 3.
    Vagni, F.: Survey of hyperspectral and multispectral imaging technologies (2007)Google Scholar
  4. 4.
    Du, H., Tong, X., Cao, X., Lin, S.: A prism-based system for multispectral video acquisition. In: 2009 IEEE 12th International Conference on Computer Vision, pp. 175–182. IEEE (2009)Google Scholar
  5. 5.
    Habel, R., Kudenov, M., Wimmer, M.: Practical spectral photography. In: Computer Graphics Forum, vol. 31, pp. 449–458. Wiley Online Library (2012)Google Scholar
  6. 6.
    Kim, M.H., Harvey, T.A., Kittle, D.S., Rushmeier, H., Dorsey, J., Prum, R.O., Brady, D.J.: 3d imaging spectroscopy for measuring hyperspectral patterns on solid objects. ACM Transactions on Graphics (Proc. SIGGRAPH 2012) 31(4), 38:1–38:11 (2012)Google Scholar
  7. 7.
    Rapantzikos, K., Balas, C.: Hyperspectral imaging: Potential in non-destructive analysis of palimpsests. In: IEEE International Conference on Image Processing, ICIP 2005, vol. 2, pp. II–618. IEEE (2005)Google Scholar
  8. 8.
    Brauers, J., Schulte, N., Aach, T.: Modeling and compensation of geometric distortions of multispectral cameras with optical bandpass filter wheels. In: 15th European Signal Processing Conference, vol. 15, pp. 1902–1906 (2007)Google Scholar
  9. 9.
    Mansouri, A., Lathuiliere, A., Marzani, F.S., Voisin, Y., Gouton, P.: Toward a 3d multispectral scanner: an application to multimedia. IEEE MultiMedia 14(1), 40–47 (2007)CrossRefGoogle Scholar
  10. 10.
    Gat, N.: Imaging spectroscopy using tunable filters: a review. In: AeroSense 2000, International Society for Optics and Photonics, pp. 50–64 (2000)Google Scholar
  11. 11.
    Attas, M., Cloutis, E., Collins, C., Goltz, D., Majzels, C., Mansfield, J.R., Mantsch, H.H.: Near-infrared spectroscopic imaging in art conservation: Investigation of drawing constituents. Journal of Cultural Heritage 4(2), 127–136 (2003)CrossRefGoogle Scholar
  12. 12.
    Hardeberg, J.Y., Schmitt, F., Brettel, H.: Multispectral color image capture using a liquid crystal tunable filter. Optical Engineering 41(10), 2532–2548 (2002)CrossRefGoogle Scholar
  13. 13.
    Wolff, L.B.: Polarization camera for computer vision with a beam splitter. JOSA A 11(11), 2935–2945 (1994)CrossRefGoogle Scholar
  14. 14.
    Hecht, E., Zajac, A.: Optics addison-wesley, Reading, Mass, pp. 301–305 (1974)Google Scholar
  15. 15.
    Lucas Digital Ltd., OpenEXR (2009), http://www.openexr.com/
  16. 16.
    CIE: Colorimetry. CIE Pub. 15.2, Commission Internationale de l’Eclairage (CIE), Vienna (1986)Google Scholar
  17. 17.
    Nielsen, M., Stokes, M.: The creation of the sRGB ICC Profile. In: Proc. Color Imaging Conf., IS&T, pp. 253–257 (1998)Google Scholar
  18. 18.
    Buchsbaum, G.: A Spatial Processor Model for Object Colour Perception. J. the Franklin Institute 310(1), 1–26 (1980)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Kim, M.H., Rushmeier, H.: Radiometric characterization of spectral imaging for textual pigment identification. In: Proc. International Symposium on Virtual Reality, Archaeology and Cultural Heritage (VAST 2011), Tuscany, Italy, Eurographics, pp. 57–64 (2011)Google Scholar
  20. 20.
    Burns, P.D., Williams, D.: Refined slanted-edge measurements for practical camera and scanner testing. In: Proc. PICS Conf., IS&T, pp. 191–195 (2002)Google Scholar

Copyright information

© Springer International Publishing Switzerland 2014

Authors and Affiliations

  • Haebom Lee
    • 1
  • Min H. Kim
    • 1
  1. 1.KAISTKorea

Personalised recommendations