Skip to main content

Hue and Saturation in the RGB Color Space

  • Conference paper

Part of the Lecture Notes in Computer Science book series (LNIP,volume 8509)

Abstract

While the RGB color model refers to the biological processing of colors in the human visual system, the HSV color model corresponds to the human perception of color similarity. In this paper we formulate a projection of RGB vectors within the RGB color space, which separates achromatic from chromatic information. The projection is the mathematical equivalent to Hue and Saturation of the HSV color space in the RGB space. It integrates the psycho- visual concept of human differentiation between colors of the HSV space into the physiological-visual based concept of the RGB space. With the projection it is, contrary to the prevailing opinion, possible to differentiate between colors based on human perception in the linear geometry of the RGB color space. This opens new possibilities in many fields of color image processing, especially in the domain of color image segmentation, where color similarity plays a major role.

Keywords

  • Color space theory
  • color similarity
  • color image segmentation
  • RGB color space
  • HSV color space

References

  1. Maxwell, J.C.: Experiments on Colour as Perceived by the Eve with Remarks on Colour-Blindness. Transactions of the Royal Society of Edinburgh, XXI, Part II. Edinburgh (1855)

    Google Scholar 

  2. Maxwell, J.C.: On the Theory of Compound Colors, and the Relations of the Colours of the Spectrum. Philosophical Transactions of the Royal Society of London 150, 57–84 (1860)

    CrossRef  Google Scholar 

  3. Cheng, H., et al.: Color Image Segmentation: Advances and Prospects. Pattern Recognition 34(12), 2259–2281 (2001)

    CrossRef  MATH  Google Scholar 

  4. Wuerger, S.M., Laurence, T.M., Krauskop, J.: Proximity Judgments in Color Space: Tests of a Euclidean Color Geometry. Vision Research 35(6), 827–835 (1995)

    CrossRef  Google Scholar 

  5. Joblove, G.H., Greenberg, D.: Color Spaces for Computer Graphics. ACM SIGGRAPH Computer Graphics 12(3) (1978)

    Google Scholar 

  6. Plataniotis, K.N., Venetsanopoulos, A.N.: Colour Image Processing and Applications. Springer (2000)

    Google Scholar 

  7. Rotaru, C., Graf, T., Zhang, J.: Color Image Segmentation in HSI Space for Automotive Applications. Journal of Real-Time Image Processing 3(4), 311–322 (2008)

    CrossRef  Google Scholar 

  8. Möbius, A.F.: Der Barycentrische Calcul (The Barycentric Calculus). Verlag von Ambrosius Barth, Leipzig (1827)

    Google Scholar 

  9. Sural, S., Qian, G., Pramanik, S.: Segmentation and Histogram Generation using the HSV Color Space for Image Retrieval. In: Proceedings 2002 International Conference on Image Processing, vol. 2, pp. II-589. IEEE Press, New York (2002)

    Google Scholar 

  10. Martin, D., Fowlkes, C., Tal, D., Malik, J.: A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics. In: Proceedings Eighth IEEE International Conference on Computer Vision ICCV 2001, vol. 2, pp. 416–423. IEEE Press, New York (2001)

    Google Scholar 

  11. Jähne, B.: Digital Image Processing. Springer, Berlin (2002)

    Google Scholar 

  12. Wyszecki, G., Stiles, W.: Color Science. John Wiley & Sons, New York (2000)

    Google Scholar 

  13. Gonzales, R., Woods, R.: Digital Image Processing. Pearson Education International, New Jersey (2008)

    Google Scholar 

  14. Acharya, T., Ray, A.: Image Processing. John Wiley & Sons, New York (2005)

    Google Scholar 

  15. Chen, W., Shi, Y., Xuan, G.: Identifying Computer Graphics using HSV Color Model and Statistical Moments of Characteristic Functions. In: 2007 International Conference on Multimedia and Expo, pp. 1123–1126. IEEE Press (2007)

    Google Scholar 

  16. Nashat, S., Abdullah, M.: Multi-class Colour Inspection of Baked Foods Featuring Support Vector Machine and Wilk’s lambda analysis. Journal of Food Engineering 101(4), 370–380 (2010)

    CrossRef  Google Scholar 

  17. Vitabile, S., Pollaccia, G., Pilato, G., Sorbello, F.: Road Signs Recognition using a Dynamic Pixel Aggregation Technique in the HSV Color Space. In: Proceedings 11th International Conference on Image Analysis and Processing, pp. 572–577. IEEE Press (2001)

    Google Scholar 

  18. Vertan, C., Zamfir, M., Zaharescu, E., Buzuloiu, V., Fernandez-Maloigne, C.: Nonlinear Color Image Filtering by Color to Planar Shape Mapping. In: 2003 International Conference on Image Processing, vol. 1, pp. 885–888. IEEE Press (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this paper

Cite this paper

Loesdau, M., Chabrier, S., Gabillon, A. (2014). Hue and Saturation in the RGB Color Space. In: Elmoataz, A., Lezoray, O., Nouboud, F., Mammass, D. (eds) Image and Signal Processing. ICISP 2014. Lecture Notes in Computer Science, vol 8509. Springer, Cham. https://doi.org/10.1007/978-3-319-07998-1_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-07998-1_23

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-07997-4

  • Online ISBN: 978-3-319-07998-1

  • eBook Packages: Computer ScienceComputer Science (R0)